
MapReduce−MPI Library Users Manual
http://www.sandia.gov/~sjplimp/mapreduce.html

Sandia National Laboratories, Copyright (2009) Sandia Corporation
This software and manual is distributed under the modified Berkeley Software Distribution (BSD) License.



Table of Contents
MapReduce−MPI (MR−MPI) Library Documentation.................................................................................1
Version info:..................................................................................................................................................1

Background.................................................................................................................................................................3
What is a MapReduce?................................................................................................................................................5
Getting Started............................................................................................................................................................7
Writing a MapReduce program...................................................................................................................................9
C++ Interface to the MapReduce−MPI Library........................................................................................................10
MapReduce add() method.........................................................................................................................................12
MapReduce aggregate() method...............................................................................................................................13
MapReduce broadcast() method...............................................................................................................................14
MapReduce clone() method......................................................................................................................................15
MapReduce collapse() method..................................................................................................................................16
MapReduce collate() method....................................................................................................................................17
MapReduce compress() method................................................................................................................................18
MapReduce multivalue_blocks() method.................................................................................................................18
MapReduce multivalue_block() method...................................................................................................................18
MapReduce convert() method...................................................................................................................................20
Copy a MapReduce object........................................................................................................................................21
Create a MapReduce object......................................................................................................................................22
Destroy a MapReduce object....................................................................................................................................23
MapReduce gather() method.....................................................................................................................................24
KeyValue add() method............................................................................................................................................25
MapReduce map() method........................................................................................................................................26
MapReduce open() method.......................................................................................................................................30
MapReduce close() method.......................................................................................................................................30
MapReduce print() method.......................................................................................................................................31
MapReduce reduce() method....................................................................................................................................32
MapReduce multivalue_blocks() method.................................................................................................................32
MapReduce multivalue_block() method...................................................................................................................32
MapReduce multivalue_block_select() method........................................................................................................32
MapReduce scan() method........................................................................................................................................34
MapReduce scrunch() method..................................................................................................................................36
Settings and defaults.................................................................................................................................................37
MapReduce sort_keys() method...............................................................................................................................42
MapReduce sort_multivalues() method....................................................................................................................43
MapReduce sort_values() method.............................................................................................................................44
MapReduce kv_stats() method..................................................................................................................................45
MapReduce kmv_stats() method...............................................................................................................................45
MapReduce cummulative_stats() method.................................................................................................................45
C interface to the MapReduce−MPI Library............................................................................................................46
Python interface to the MapReduce−MPI Library....................................................................................................49
OINK interface to the MapReduce−MPI Library.....................................................................................................56
Technical Details.......................................................................................................................................................57

Length and byte−alignment of keys and values...........................................................................................57
Memory requirements for KeyValue and KeyMultiValue objects..............................................................58
Out−of−core operation.................................................................................................................................59
Fundamemtal library limits..........................................................................................................................60
Hash functions..............................................................................................................................................61

MapReduce−MPI Library Users Manual

i



Table of Contents
Callback functions........................................................................................................................................61
Python overhead...........................................................................................................................................62
Error messages.............................................................................................................................................62

Examples...................................................................................................................................................................63
Word frequency example.............................................................................................................................63
R−MAT matrices example...........................................................................................................................64

MapReduce−MPI Library Users Manual

ii



MapReduce−MPI (MR−MPI) Library Documentation

Version info:

The MR−MPI "version" is the date when it was released, such as 1 May 2010. MR−MPI is updated continuously.
Whenever we fix a bug or add a feature, we release it immediately, and post a notice on this page of the WWW
site. Each dated copy of MR−MPI contains all the features and bug−fixes up to and including that version date.
The version date is printed to the screen every time you run a program that uses MR−MPI. It is also in the file
src/version.h and in the MR−MPI directory name created when you unpack a tarball.

If you browse the HTML or PDF doc pages on the MR−MPI WWW site, they always describe the most
current version of MR−MPI.

• 

If you browse the HTML or PDF doc pages included in your tarball, they describe the version you have.• 

The MapReduce−MPI (MR−MPI) library is open−source software that implements the MapReduce operation
popularized by Google on top of standard MPI message passing.

The library is designed for parallel execution on distributed−memory platforms, but will also operate on a single
processor. It requires no additional software to build and run, except linking with an MPI library if you wish to
perform MapReduces in parallel. Similar to the original Google design, a user performs a MapReduce by writing
a small program that invokes the library. The user typically provides two application−specific functions, a
"map()" and a "reduce()", that are called back from the library when a MapReduce operation is executed. "Map()"
and "reduce()" are serial functions, meaning they are invoked independently on individual processors on portions
of your data when performing a MapReduce operation in parallel.

The MR−MPI library is written in C++ and is callable from hi−level langauges such as C++, C, Fortran. A Python
wrapper is also included, so MapReduce programs can be written in Python, including map() and reduce() user
callback methods. A hi−level scripting interface to the MR−MPI library, called OINK, is also included which can
be used to develop and chain MapReduce algorithms together in scripts with commands that simplify data
management tasks. OINK has its own manual and doc pages.

The goal of the MR−MPI library is to provide a simple and portable interface for users to create their own
MapReduce programs, which can then be run on any desktop or large parallel machine using MPI. See the
Background section for features and limitations of this implementation.

The distrubution includes a few examples of simple programs that illustrate the use of MR−MPI.

Source code for the library and OINK is freely available for download from the MR−MPI web site and is licensed
under the modified Berkeley Software Distribution (BSD) License. This basically means they can be used by
anyone for any purpose. See the LICENSE file provided with the distribution for more details.

The authors of the MR−MPI library are Steve Plimpton and Karen Devine who can be contacted via email:
sjplimp,kddevin at sandia.gov.

The MR−MPI documentation is organized into the following sections. If you find errors or omissions in this
manual or have suggestions for useful information to add, please send an email to the developers so we can
improve the MR−MPI documentation.

Once you are familiar with MR−MPI, you may want to bookmark this page at interface_c++.html, since it gives
quick access to documentation for all the MR−MPI library methods.

PDF file of the entire manual, generated by htmldoc

1

http://www.sandia.gov/~sjplimp/mapreduce/bug.html
http://www.sandia.gov/~sjplimp/mapreduce/bug.html
http://en.wikipedia.org/wiki/Mapreduce
http://www.cs.sandia.gov/~sjplimp/mapreduce.html
http://en.wikipedia.org/wiki/BSD_license
http://www.cs.sandia.gov/~sjplimp
http://www.cs.sandia.gov/~kddevin
http://www.easysw.com/htmldoc


Background• 
What is a MapReduce?• 
Getting Started• 
Writing a MapReduce program• 
C++ Interface to the MapReduce−MPI Library

Create a MapReduce object♦ 
Copy a MapReduce object♦ 
Destroy a MapReduce object♦ 
MapReduce::add()♦ 
MapReduce::aggregate()♦ 
MapReduce::broadcast()♦ 
MapReduce::clone()♦ 
MapReduce::close()♦ 
MapReduce::collapse()♦ 
MapReduce::collate()♦ 
MapReduce::compress()

MapReduce::multivalue_blocks()◊ 
MapReduce::multivalue_block()◊ 

♦ 

MapReduce::convert()♦ 
MapReduce::gather()♦ 
MapReduce::map()♦ 
MapReduce::open()♦ 
MapReduce::print()♦ 
MapReduce::reduce()

MapReduce::multivalue_blocks()◊ 
MapReduce::multivalue_block()◊ 

♦ 

MapReduce::scan()♦ 
MapReduce::scrunch()♦ 
MapReduce::sort_keys()♦ 
MapReduce::sort_values()♦ 
MapReduce::sort_multivalues()♦ 
MapReduce::kv_stats()♦ 
MapReduce::kmv_stats()♦ 
MapReduce::cummulative_stats()♦ 
KeyValue::add()♦ 
Settings and defaults♦ 

• 

C interface to the MapReduce−MPI Library• 
Python interface to the MapReduce−MPI Library• 
OINK interface to the MapReduce−MPI Library• 
Technical Details• 
Examples

Word frequency♦ 
R−MAT matrices♦ 

• 

2



MapReduce−MPI WWW Site − MapReduce−MPI Documentation

Background

MapReduce is the programming paradigm popularized by Google researchers Dean and Ghemawat. Their
motivation was to enable analysis programs to be rapidly developed and deployed within Google to operate on the
massive data sets residing on their large distributed clusters. Their paper introduced a novel way of thinking about
certain kinds of large−scale computations as "map" operations followed by "reduces". The power of the paradigm
is that when cast in this way, a traditionally serial algorithm now becomes two highly parallel application−specific
operations (requiring no communication) sandwiched around an intermediate operation that requires parallel
communication, but which can be encapsulated in a library since the operation is independent of the application.

The Google implementation of MapReduce was a C++ library with communication between networked machines
via remote procedure calls. They allow for fault tolerance when large numbers of machines are used, and can use
disks as out−of−core memory to process huge data sets. Thousands of MapReduce programs have since been
written by Google researchers and are part of the daily compute tasks run by the company.

While I had heard about MapReduce, I didn't appreciate its power for scientific computing on a monolithic
distributed−memory parallel machine, until reading a SC08 paper by Tu, et al of the D.E. Shaw company. They
showed how to think about tasks such as the post−processing of simulation output as MapReduce operations. In
this context it can be useful for computations that would normally be thought of as serial, such as reading in a
large data set and scanning it for events of a desired kind. As before, the computation can be formulated as a
highly parallel "map" followed by a "reduce". The encapsulated parallel operation in the middle requires
all−to−all communication to reorgnanize the data, a familiar MPI operation.

Tu's implementation of MapReduce was in parallel Python with communication between processors via MPI,
again allowing disks to be used for out−of−core operations.

This MapReduce−MPI (MR−MPI) library is a very simple and lightweight implementation of the basic
MapReduce functionality, borrowing ideas from both the Dean and Sanjay and Tu, et al papers. It has the
following features:

C++ library using MPI for inter−processor communication. This allows precise control over the memory
allocated during a large−scale MapReduce.

• 

C++ and C and Python interfaces provided. A C++ interface means that one or more MapReduce objects
can be instantiated and invoked by the user's program. A C interface means that the library can also be
called from C or other hi−level languages such as Fortran. A Python interface means the library can be
called from a Python script, allowing you to write serial map() and reduce() functions in Python. If your
machine can run Python in parallel, you can also run a parallel MapReduce in that manner.

• 

Small, portable. The entire library is a few thousand lines of C++ code in a handful of C++ files which
can be built on any machine with a C++ compiler. For parallel operation, you link with MPI, a standard
message passing library available on all distributed memory machines. For serial operation, a dummy
MPI library can be substituted, which is provided. The Python wrapper can be installed on any machine
with a version of Python that includes the ctypes module, typically Python 2.5 or later.

• 

In−core or Out−of−core operation. Each MapReduce object created allocates per−processor "pages" of
memory, where the page size is determined by the user. Typical MapReduce operations can be performed
using just a few such pages. If your data set (key/value pairs) fits in a single page, then the library
performs its operations in−core. If your data set exceeds the page size, then processors write to temporary
disk files as needed and subsequently read from them. This allows processing of data sets that are larger
than will fit in the aggregate memory of all the processors.

• 

This library also has the following limitation:

3

http://www.cs.sandia.gov/~sjplimp/mapreduce.html


No fault tolerance. Current MPI implementations do not enable easy detection of a dead processor. So
like most MPI programs, a MapReduce operation will hang or crash if a processor goes away.

• 

Finally, I call attention to recent work by Alexander Gray and colleagues at Georgia Tech. They show that various
kinds of scientific computations such as N−body forces via multipole expansions, k−means clustering, and
machine learning algorithms, can be formulated as MapReduce operations. Thus there is an expanding set of
data−intense or compute−intense problems that may be amenable to solution using a MapReduce library such as
this.

(Dean) J. Dean and S. Ghemawat, "MapReduce: Simplified Data Processing on Large Clusters", OSDI'04
conference (2004); J. Dean and S. Ghemawat, "MapReduce: Simplified Data Processing on Large Clusters",
Communications of the ACM, 51, p 107−113 (2008).

(Tu) T. Tu, C. A. Rendleman, D. W. Borhani, R. O. Dror, J. Gullingsrud, M. O. Jensen, J. L. Kelpeis, P.
Maragakis, P. Miller, K. A. Stafford, D. E. Shaw, "A Scalable Parallel Framework for Analyzing Terascale
Molecular Dynamics Trajectories", SC08 proceedings (2008).

(Gray) A. Gray, Georgia Tech, http://www.cc.gatech.edu/~agray

4



MapReduce−MPI WWW Site − MapReduce−MPI Documentation

What is a MapReduce?

The canonical example of a MapReduce operation, described in both the Dean and Sanjay and Tu, et al papers, is
counting the frequency of words in a collection of text files. Imagine a large corpus of text comprising Gbytes or
Tbytes of data. To count how often each word appears, the following algorithm would work, written in Python:

dict = {}
for file in sys.argv[1:]:
 text = open(file,'r').read()
 words = text.split()
 for word in words:
   if word not in dict: dict[word] = 1
   else: dict[word] += 1
unique = dict.keys()
for word in unique:
 print dict[word],word 

Dict is a "dictionary" or associative array which is a collection of key/value pairs where the keys are unique. In
this case, the key is a word and its value is the number of times it appears in any text file. The program loops over
files, and splits the contents into words (separated by whitespace). For each word, it either adds it to the dictionary
or increments its associated value. Finally, the resulting dictionary of unique words and their counts is printed.

The drawback of this implementation is that it is inherently serial. The files are read one by one. More importantly
the dictionary data structure is updated one word at a time.

A MapReduce formulation of the same task is as follows:

array = []
for file in sys.argv[1:]:
 array += map(file)
newarray = collate(array)
unique = [] 
for entry in newarray:
 unique += reduce(entry)
for entry in unique:
 print entry[1],entry[0] 

Array is now a linear list of key/value pairs where a key may appear many times (not a dictionary). The map()
function reads a file, splits it into words, and generates a key/value pair for each word ialignn the file. The key is
the word itself and the value is the integer 1. The collate() function reorganizes the (potentially very large) list of
key/value pairs into a new array of key/value pairs where each unique key appears exactly once and the associated
value is a concatenated list of all the values associated with the same key in the original array. Thus, a key/value
pair in the new array would be ("dog",[1,1,1,1,1]) if the word "dog" appeared 5 times in the text corpus. The
reduce() function takes a single key/value entry from the new array and returns a key/value pair that has the word
as its key and the count as its value, ("dog",5) in this case. Finally, the elements of the unique array are printed.

As written, the MapReduce algorithm could be executed on a single processor. However, there is now evident
parallelism. The map() function calls are independent of each other and can be executed on different processors
simultaneously. Ditto for the reduce() function calls. In this scenario, each processor would accumulate its own
local "array" and "unique" lists of key/value pairs.

Also note that if the map and reduce functions are viewed as black boxes that produce a list of key/value pairs (in
the case of map) or convert a single key/value pair into a new key/value pair (in the case of reduce), then they are

5

http://www.cs.sandia.gov/~sjplimp/mapreduce.html


the only part of the above algorithm that is application−specific. The remaining portions (the collate function,
assignment of map or reduce tasks to processors, combining of the map/reduce output across processors) can be
handled behind the scenes in an application−independent fashion. That is the portion of the code that is handled
by the MR−MPI (or other) MapReduce library. The user only needs to provide a small driving program to call the
library and serial functions for performing the desired map() and reduce() operations.

(Dean) J. Dean and S. Ghemawat, "MapReduce: Simplified Data Processing on Large Clusters", OSDI'04
conference (2004); J. Dean and S. Ghemawat, "MapReduce: Simplified Data Processing on Large Clusters",
Communications of the ACM, 51, p 107−113 (2008).

(Tu) T. Tu, C. A. Rendleman, D. W. Borhani, R. O. Dror, J. Gullingsrud, M. O. Jensen, J. L. Kelpeis, P.
Maragakis, P. Miller, K. A. Stafford, D. E. Shaw, "A Scalable Parallel Framework for Analyzing Terascale
Molecular Dynamics Trajectories", SC08 proceedings (2008).

6



MapReduce−MPI WWW Site − MapReduce−MPI Documentation

Getting Started

Once you have downloaded the MapReduce MPI (MR−MPI) library, you should have the tarball
mapreduce.tar.gz on your machine. Unpack it with the following commands:

gunzip mapreduce.tar.gz
tar xvf mapreduce.tar 

which should create a mapreduce directory containing the following:

README• 
LICENSE• 
doc• 
examples• 
mpistubs• 
oink• 
oinkdoc• 
python• 
src• 
user• 

The doc directory contains this documentation. The oink and oinkdoc directories contain the OINK scripting
interface to the MR−MPI library and its separate documentation. The examples directory contains a few simple
MapReduce programs which call the MR−MPI library. These are documented by a README file in that
directory and are discussed below. The mpistubs directory contains a dummy MPI library which can be used to
build a MapReduce program on a serial machine. The python directory contains the Python wrapper files needed
to call the MR−MPI library from Python. The src directory contains the files that comprise the MR−MPI library.
The user directory contains user−contributed MapReduce programs. See the README in that directory for
further details.

To build the library for use by a C++ or C program, go to the src directory and type

make 

You will see a list of machine names, each of which has their own Makefile.machine file in the src/MAKE
directory. You can choose one of these and attempt to build the MR−MPI library by typing

make machine 

If you are successful, this will produce the file "libmrmpi_machine.a" which can be linked by other programs. If
not, you will need to create a src/MAKE/Makefile.machine file compatible with your platform, using one of the
existing files as a template.

The only settings in a Makefile.machine file that need to be specified are those for the compiler and the MPI
library on your machine. If MPI is not already installed, you can install one of several free versions that work on
essentially all platforms. MPICH and OpenMPI are the most common.

Within Makefile.machine you can either specify via −I and −L switches where the MPI include and library files
are found, or you can use a compiler wrapper provided with MPI, like mpiCC or mpic++, which will know where
those files are.

7

http://www.cs.sandia.gov/~sjplimp/mapreduce.html
http://www.sandia.gov/~sjplimp/download.html


You can also build the MR−MPI library without MPI, using the dummy MPI library provided in the mpistubs
directory. In this case you can only run the library on a single processor. To do this, first build the dummy MPI
library, by typing "make" from within the mpistubs directory. Again, you may need to edit mpistubs/Makefile for
your machine. Then from the src directory, type "make serial" which uses the src/MAKE/Makefile.serial file.

Both a C++ and C interface are part of the MR−MPI library, so it should be usable from any hi−level language.
To use the library from Python, you don't need to build a *.a file from the src directory. Instead, you build it as a
dynamic library from the python directory. Instructions are given in the Python interface section.

The MapReduce programs in the examples directory can be built by typing

make −f Makefile.machine 

from within the examples directory, where Makefile.machine is one of the Makefiles in the examples directory.
Again, you may need to modify one of the existing ones to create a new one for your machine. Some of the
example programs are provided as a C++ program, a C program, as a Python script, or as an OINK input script.
Once you have built OINK, the latter can be run as, for example,

oink_linux <in.rmat 

When you run one of the example MapReduce programs or your own, if you get an immediate error about the
MRMPI_BIGINT data type, you will need to edit the file src/mrtype.h and re−compile the library. Mrtype.h and
the error check insures that your MPI will perform operations on 8−byte unsigned integers as required by the
MR−MPI library. For the MPI on most machines, this is satisfied by the MPI data type
MPI_UNSIGNED_LONG_LONG. But some machines do not support the "long long" data type, and you may
need a different setting for your machine and installed MPI, such as MPI_UNSIGNED_LONG.

8



MapReduce−MPI WWW Site − MapReduce−MPI Documentation

Writing a MapReduce program

The usual way to use the MR−MPI library is to write a small main program that calls the library. In C++, your
program includes two library header files and uses the MapReduce namespace:

#include "mapreduce.h"
#include "keyvalue.h"
using namespace MAPREDUCE_NS 

Follow these links for info on using the library from a C program or from a Python program.

Arguments to the library's map() and reduce() methods include function pointers to serial "mymap" and
"myreduce" functions in your code (named anything you wish), which will be "called back to" from the library as
it performs the parallel map and reduce operations.

A typical simple MapReduce program involves these steps:

MapReduce *mr = new MapReduce(MPI_COMM_WORLD);   // instantiate an MR object
mr−>map(nfiles,                          // parallel map
mr−>collate()                                    // collate keys
mr−>reduce(                           // parallel reduce
delete mr;                                       // delete the MR object 

The main program you write may be no more complicated than this. The API for the MR−MPI library is a handful
of methods which are components of a MapReduce operation. They can be combined in more complex sequences
of calls than listed above. For example, one map() may be followed by several reduce() operations to massage
your data in a desired way. Output of final results is typically performed as part of a myreduce() function you
write which executes on one or more processors and writes to a file(s) or the screen.

The MR−MPI library operates on "keys" and "values" which are generated and manipulated by your mymap() and
myreduce() functions. A key and a value are simply byte strings of arbitrary length which are logically associated
with each other, and can thus represent anything you wish. For example, a key can be a text string or a particle or
grid cell ID. A value can be one or more numeric values or a text string or a composite data structure that you
create.

9

http://www.cs.sandia.gov/~sjplimp/mapreduce.html


MapReduce−MPI WWW Site − MapReduce−MPI Documentation

C++ Interface to the MapReduce−MPI Library

This mutiple−page section discusses how to call the MR−MPI library from a C++ program and gives a
description of all its methods and variable settings. Use of the library from a C program (or other hi−level
language) or from Python is discussed in other sections of the manual.

All the library methods operate on two basic data structures stored within the MapReduce object, a KeyValue
object (KV) and a KeyMultiValue object (KMV). When running in parallel, these objects are stored in a
distributed fashion across multiple processors.

A KV is a collection of key/value pairs. The same key may appear many times in the collection, associated with
values which may or may not be the same.

A KMV is also a collection of key/value pairs. But each key in the KMV is unique, meaning it appears exactly
once (see the clone() method for a possible exception). The value associated with a KMV key is a concatenated
list (a multi−value) of all the values associated with the same key in the original KV.

More details about how KV and KMV objects are stored are given in the Technical Details section.

Here is an overview of how the various library methods operate on KV and KMV objects. This is useful to
understand, since this determines how the various operations can be chained together in your program.

add() KV −> KV add pairs from one KV to another serial
2
pages

aggregate() KV −> KV pairs are aggregated onto procs parallel
7
pages

broadcast() KV −> KV send pairs from one proc to all procs parallel
2
pages

clone() KV −> KMV each KV pair becomes a KMV pair serial
2
pages

close() KV
allows one MapReduce object to add KV pairs to
another

serial
0
pages

collapse() KV −> KMV all KV pairs become one KMV pair serial
2
pages

collate() KV −> KMV aggregate + convert parallel
4+
pages

compress() KV −> KV calls back to user program to compress duplicate keysserial
4+
pages

convert() KV −> KMV duplicate KV keys become one KMV key serial
4+
pages

gather() KV −> KV collect pairs on many procs to few procs parallel
2
pages

map()
create or add to a
KV

calls back to user program to generate pairs serial 1 page

reduce() KMV −> KV calls back to user program to process KMV pairs serial
3
pages

open() serial

10

http://www.cs.sandia.gov/~sjplimp/mapreduce.html


create or add to a
KV

allows one MapReduce object to add KV pairs to
another

0
pages

print() KV or KMV print KV or KMV pairs to screen or file(s) serial 1 page

scan() KV or KMV
calls back to user program to process KV or KMV
pairs

serial 1 page

scrunch() KV −> KMV gather + collapse parallel
3
pages

sort_keys() KV −> KV calls back to user program to sort pairs by key serial
5
pages

sort_values() KV −> KV calls back to user program to sort pairs by value serial
5
pages

sort_multivalues()KMV −> KMV
calls back to user program to sort multi−values within
each pair

serial
4
pages

kv_stats() KV print stats about a KV serial
0
pages

kmv_stats() KMV print stats about a KMV serial
0
pages

Note that each MapReduce object contains a single KV or KMV object (or neither) when its method is called.
(Some methods operate on 2 or more MapReduce objects.) When the method completes, the MapReduce object
also contains a single KV or KMV object. Thus if a method creates a new KV or KMV object, the old one is
deleted, if it existed. The KV object is also deleted if a KMV object is produced, and vice versa.

The methods flagged as "serial" perform their operation on the portion of a KV or KMV owned by an individual
processor. They involve only local computation (performed simultaneously on all processors) and no parallel
comuunication. The methods flagged as "parallel" involve communication between processors.

The listed page counts are the number of memory pages that method requires. See the memsize setting for a
discussion of what memory pages are and how their size is set. The methods whose page count is listed as 4+ all
perform a convert() operation internally. The minimum number of pages this requires is 4. Depending on the page
size and the characteristics of the KV pairs being converted to KMV pairs, more pages can be required. See the
out−of−core discussion in this section for more details.

11



MapReduce−MPI WWW Site − MapReduce−MPI Documentation

MapReduce add() method

uint64_t MapReduce::add(MapReduce *mr2) 

This calls the add() method of a MapReduce object, to add the KeyValue pairs contained in a second MapReduce
object mr2, to the KeyValue object of the first MapReduce object, which is created if one does not exist. This is
useful if multiple MapReduce objects have been created and populated with key/value pairs and you wish to
combine them before performing further operations, such as a collate() and reduce().

For example, this sequence of calls:

MapReduce *mr1 = new MapReduce(MPI_COMM_WORLD);
mr1−>map(ntasks,
MapReduce *mr2 = mr1−>copy();
mr2−>collate(NULL);
mr2−>reduce(
mr1−>add(mr2);
delete mr2;
mr1−>collate(NULL);
mr1−>reduce( 

would generate one set of key/value pairs from the initial map() operation, then make a copy of them, which are
then collated and reduced to a new set of key/value pairs. The new set of key/value pairs are added to the original
set produced by the map() operation to form an augmented set of key/value pairs, which could be further
processed.

Related methods: copy, map()

12

http://www.cs.sandia.gov/~sjplimp/mapreduce.html


MapReduce−MPI WWW Site − MapReduce−MPI Documentation

MapReduce aggregate() method

uint64_t MapReduce::aggregate(int (*myhash)(char *, int)) 

This calls the aggregate() method of a MapReduce object, which reorganizes a KeyValue object across processors
into a new KeyValue object. In the original object, duplicates of the same key may be stored on many processors.
In the new object, all duplicates of a key are stored by the same processor. The method returns the total number of
key/value pairs in the new KeyValue object, which will be the same as the number in the original object.

A hashing function is used to assign keys to processors. Typically you will not care how this is done, in which
case you can specify a NULL, i.e. mr−>aggregate(NULL), and the MR−MPI library will use its own internal hash
function, which will distribute them randomly and hopefully evenly across processors.

On the other had, if you know the best way to do this for your data, then you should provide the hashing function.
For example, if your keys are integer IDs for particles or grid cells, you might want to use the ID (modulo the
processor count) to choose the processor it is assigned to. Ideally, you want a hash function that will distribute
keys to processors in a load−balanced fashion.

In this example the user function is called myhash() and it must have the following interface:

int iproc = myhash(char *key, int keybytes) 

Your function will be passed a key (byte string) and its length in bytes. Typically you want to return an integer
such that 0 <= iproc < P, where P is the number of processors. But you can return any integer, since the MR−MPI
library uses the result in this manner to assign the key to a processor:

int iproc = myhash(key,keybytes) % P; 

Because the aggregate() method will, in general, reassign all key/value pairs to new processors, it incurs a large
volume of all−to−all communication. However, this is performed concurrently, taking advantage of the large
bisection bandwidth most large parallel machines provide.

The aggregate() method should load−balance key/value pairs across processors if they are initially imbalanced.

Related methods: collate()

13

http://www.cs.sandia.gov/~sjplimp/mapreduce.html


MapReduce−MPI WWW Site − MapReduce−MPI Documentation

MapReduce broadcast() method

uint64_t MapReduce::broadcast(int root) 

This calls the broadcast() method of a MapReduce object, which delete the key/value pairs of a KeyValue object
on all processors except root, and then broadcasts the key/value pairs owned by the root processor to all the other
processors. The end result is that all processors have a copy of the key/value pairs initially owned by the root
processor.

The resulting set of distributed key/value pairs will have P copies of each entry, where P = the # of processors.
This will in general not be useful for further MapReduce operations, but it can be useful after a gather() before
doing a final reduce() where you want to give each processor access to the entire gathered result and let it make a
local copy of the datums.

This method requires parallel communication as processors send their key/value pairs to other processors.

Related methods: gather()

14

http://www.cs.sandia.gov/~sjplimp/mapreduce.html


MapReduce−MPI WWW Site − MapReduce−MPI Documentation

MapReduce clone() method

uint64_t MapReduce::clone() 

This calls the clone() method of a MapReduce object, which converts a KeyValue object directly into a
KeyMultiValue object. It simply turns each key in KeyValue object into a key in the new KeyMultiValue object,
with the same value. The method returns the total number of key/value pairs in the KeyMultiValue object, which
will be the same as the number in the KeyValue object.

This method essentially enables a KeyValue object to be passed directly to a reduce operation, which requires a
KeyMultiValue object as input. Typically you would only do this if the keys in the KeyValue object are already
unique, to avoid the extra overhead of an aggregate() or convert() or collate(), but this is not required. If they are
not, then there will also be duplicate keys in the KeyMultiValue object.

Note that one of the map() methods allows an existing KeyValue object to be passed as input to a user mymap()
function, generating a new Keyvalue object in the process. Thus there is typically no need to invoke clone()
followed by reduce().

This method is an on−processor operation, requiring no communication. When run in parallel, the key/value pairs
of the new KeyMultiValue object are stored on the same processor which owns the corresponding KeyValue
pairs.

Related methods: collapse(), collate, convert()

15

http://www.cs.sandia.gov/~sjplimp/mapreduce.html


MapReduce−MPI WWW Site − MapReduce−MPI Documentation

MapReduce collapse() method

uint64_t MapReduce::collapse(char *key, int keybytes) 

This calls the collapse() method of a MapReduce object, which collapses a KeyValue object into a
KeyMultiValue object with a single new key, given as an argument with its length in bytes. The single new value
in the KeyMultiValue object is a concatentated list of all the keys and values in the KeyValue object. The method
returns the total number of key/value pairs in the KeyMultiValue object, which will be 1 for each processor
owning pairs.

For example, if the KeyValue object contains these key/value pairs:

("dog",3), ("me",45), ("parallel",1) 

then the new KeyMultiValue object will contain a single key/value pair:

(key,["dog",3,"me",45,"parallel",1]) 

This method can be used to collect a set of key/value pairs to use in a reduce() method so that it can all be passed
to a single invocation of your myreduce() function for output. See the Technical Details section for details on how
the collapse() method affects the alignment of keys and values that may eventually be passed to your myreduce()
function via the reduce() method.

This method is an on−processor operation, requiring no communication. When run in parallel, each processor
collapses the key/value pairs it owns into a single key/value pair. Thus each processor will assign the same key to
its new pair. See the gather() and scrunch() methods for ways to collect all key/value pairs on to one or a few
processors.

Related methods: clone(), collate, convert()

16

http://www.cs.sandia.gov/~sjplimp/mapreduce.html


MapReduce−MPI WWW Site − MapReduce−MPI Documentation

MapReduce collate() method

uint64_t MapReduce::collate(int (*myhash)(char *, int)) 

This calls the collate() method of a MapReduce object, which aggregates a KeyValue object across processors and
converts it into a KeyMultiValue object. This method is exactly the same as performing an aggregate() followed
by a convert(). The method returns the total number of unique key/value pairs in the KeyMultiValue object.

The hash argument is used by the aggregate() portion of the operation and can be specified as NULL. See the
aggregate() doc page for details.

Note that if your map operation does not produce duplicate keys, you do not typically need to perform a collate().
Instead you can convert a KeyValue object into a KeyMultiValue object directly via the clone() method, which
requires no communication. Or you can pass it directly to another map() operation. One exception would be if
your map operation produces a KeyValue object which is highly imbalanced across processors. The aggregate()
portion of the operation should redistribute the key/value pairs more evenly.

This method is a parallel operation (aggregate()), followed by an on−processor operation (convert()).

Related methods: aggregate(), clone, collapse(), compress(), convert()

17

http://www.cs.sandia.gov/~sjplimp/mapreduce.html


MapReduce−MPI WWW Site − MapReduce−MPI Documentation

MapReduce compress() method

MapReduce multivalue_blocks() method

MapReduce multivalue_block() method

uint64_t MapReduce::compress(void (*mycompress)(char *, int, char *, int, int *, KeyValue *, void *), void *ptr) 

uint64_t MapReduce::multivalue_blocks() 

int MapReduce::multivalue_block(int iblock, char **ptr_multivalue, int **ptr_valuesizes) 

This calls the compress() method of a MapReduce object, passing it a function pointer to a mycompress function
you write. This method compresses a KeyValue object with duplicate keys into a new KeyValue object, where
each key appears once (on that processor) and has a single new value. The new value is a combination of the
values associated with that key in the original KeyValue object. The mycompress() function you provide
generates the new value, once for each unique key (on that processor). The method returns the total number of
key/value pairs in the new KeyValue object.

This method is used to compress a large set of key/value pairs produced by the map() method into a smaller set
before proceeding with the rest of a MapReduce operation, e.g. with a collate() and reduce().

You can give this method a pointer (void *ptr) which will be returned to your mycompress() function. See the
Technical Details section for why this can be useful. Just specify a NULL if you don't need this.

In this example the user function is called mycompress() and it must have the following interface, which is the
same as that used by the reduce() method:

void mycompress(char *key, int keybytes, char *multivalue, int nvalues, int *valuebytes, KeyValue *kv, void *ptr) 

A single key/multi−value (KMV) pair is passed to your function from a temporary KeyMultiValue object created
by the library. That object creates a multi−value for each unique key in the KeyValue object which contains a list
of the nvalues associated with that key. Note that this is only the values on this processor, not across all
processors.

There are two possibilities for a KMV pair returned to your function. The first is that it fits in one page of memory
allocated by the MapReduce object, which is the usual case. See the memsize setting for details on memory
allocation.

In this case, the char *multivalue argument is a pointer to the beginning of the multi−value which contains all
nvalues, packed one after the other. The int *valuebytes argument is an array which stores the length of each
value in bytes. If needed, it can be used by your function to compute an offset into char *values for where each
individual value begins. Your function is also passed a kv pointer to a new KeyValue object created and stored
internally by the MapReduce object.

If the KMV pair does not fit in one page of memory, then the meaning of the arguments passed to your function is
changed. Your function must call two additional library functions in order to retrieve a block of values that does
fit in memory, and process them one block at a time.

18

http://www.cs.sandia.gov/~sjplimp/mapreduce.html


In this case, the char *multivalue argument will be NULL and the nvalues argument will be 0. Either of these can
be tested for within your function. If you know huge multi−values will not occur, then the test is not needed. The
meaning of the kv and ptr arguments is the same as discussed above. However, the int *valuebytes argument is
changed to be a pointer to the MapReduce object. This is to allow you to make the following two kinds of calls
back to the library:

MapReduce *mr = (MapReduce *) valuebytes;
int nblocks;
uint64_t nvalues_total = mr−>multivalue_blocks(nblocks);
for (int iblock = 0; iblock <nblocks; iblock++) 
  int nv = mr−>multivalue_block(iblock,ebytes);
  for (int i = 0; i  <nv; i++) 
    process each value within the block of values

The call to multivalue_blocks() returns both the total number of values (as an unsigned 64−bit integer), and the
number of blocks of values in the multi−value. Each call to multivalue_block() retrieves one block of values. The
number of values in the block is returned, as nv in this case. The multivalue and valuebytes arguments are
pointers to a char * and int * (i.e. a char ** and int **), which will be set to point to the block of values and their
lengths respectively, so they can then be used just as the multivalue and valuebytes arguments in the myreduce()
callback itself (when the values do not exceed available memory).

The call to multivalue_blocks() returns the number of blocks of values in the multi−value. Each call to
multivalue_block() retrieves one block of values. The number of values in the block (nv in this case) is returned.
The multivalue and valuebytes arguments are pointers to a char * and int * (i.e. a char ** and int **), which will
be set to point to the block of values and their lengths respectively, so they can then be used just as the multivalue
and valuebytes arguments in the mycompress() callback itself (when the values do not exceed available memory).

Note that in this example we are re−using (and thus overwriting) the original multivalue and valuebytes
arguments as local variables.

Also note that your mycompress() function can call multivalue_block() as many times as it wishes and process the
blocks of values multiple times or in any order, though looping through blocks in ascending order will typically
give the best disk I/O performance.

Your mycompress() function should typicaly produce a single key/value pair which it registers with the
MapReduce object by calling the add() method of the KeyValue object. The syntax for this call is described on
the doc page for the KeyValue add() methd. For example, if the set of nvalues were integers, the compressed
value might be the sum of those integers.

See the Settings and Technical Details sections for details on the byte−alignment of keys and values that are
passed to your mycompress() function and on those you register with the KeyValue add() methods. Note that only
the first value of a multi−value (or of each block of values) passed to your mycompress() function will be aligned
to the valuealign setting.

This method is an on−processor operation, requiring no communication. When run in parallel, each processor
operates only on the key/value pairs it stores. Thus you are NOT compressing all values associated with a
particular key across all processors, but only those currently owned by one processor.

Related methods: collate()

19



MapReduce−MPI WWW Site − MapReduce−MPI Documentation

MapReduce convert() method

uint64_t MapReduce::convert() 

This calls the convert() method of a MapReduce object, which converts a KeyValue object into a KeyMultiValue
object. It does this by finding duplicate keys (stored only by this processor) and concatenating their values into a
list of values which it associates with the key in the KeyMultiValue object. The method returns the total number
of key/value pairs in the KeyMultiValue object, which will be the number of unique keys in the KeyValue object.

This operation creates a hash table to find duplicate keys efficiently. More details are given in the Technical
Details section.

This method is an on−processor operation, requiring no communication. When run in parallel, each processor
converts only the key/value pairs it owns into key/multi−value pairs. Thus, this operation is typically performed
only after the aggregate() method has collected all duplicate keys to the same processor. The collate() method
performs an aggregate() followed by a convert().

Related methods: collate()

20

http://www.cs.sandia.gov/~sjplimp/mapreduce.html


MapReduce−MPI WWW Site − MapReduce−MPI Documentation

Copy a MapReduce object

MapReduce *MapReduce::copy() 

This calls the copy() method of a MapReduce object, which creates a second MapReduce object which is an exact
copy of the first, including all settings, and returns a pointer to the new copy.

If the original MapReduce object contained a KeyValue or KeyMultiValue object, as discussed here, then the new
MapReduce object will contain a copy of it. This means that all the key/value and/or key/multivalue pairs
contained in the first MapReduce object are copied into the new MapReduce object. Thus the first MapReduce
object could be subsequently deleted without affecting the new MapReduce object.

This is useful if you wish to retain a copy of a set of key/value pairs before processing it further. See the add()
method for how to merge the key/value pairs from two MapReduce objects into one. For example, this sequence
of calls:

MapReduce *mr1 = new MapReduce(MPI_COMM_WORLD);
mr1−>map(ntasks,
MapReduce *mr2 = mr1−>copy();
mr2−>collate(NULL);
mr2−>reduce(
mr1−>add(mr2);
delete mr2;
mr1−>collate(NULL);
mr1−>reduce( 

would generate one set of key/value pairs from the initial map() operation, then make a copy of them, which are
then collated and reduced to a new set of key/value pairs. The new set of key/value pairs are added to the original
set produced by the map() operation to form an augmented set of key/value pairs, which could be further
processed.

Related methods: create, add()

21

http://www.cs.sandia.gov/~sjplimp/mapreduce.html


MapReduce−MPI WWW Site − MapReduce−MPI Documentation

Create a MapReduce object

MapReduce::MapReduce(MPI_Comm comm)
MapReduce::MapReduce()
MapReduce::MapReduce(double dummy) 

You can create a MapReduce object in any of the three ways shown, as well as via the copy() method. The three
creation methods differ slightly in how MPI is initialized and finalized.

In the first case, you pass an MPI communicator to the constructor. This means your program should initialize
(and finalize) MPI, which creates the MPI_COMM_WORLD communicator (all the processors you are running
on). Normally this is what you pass to the MapReduce constructor, but you can pass a communicator for a subset
of your processors if desired. You can also instantiate multiple MapReduce objects, giving them each a
communicator for all the processors or communicators for a subset of processors.

The second case can be used if your program does not use MPI at all. The library will initialize MPI if it has not
already been initialized. It will not finalize MPI, but this should be fine. Worst case, your program may complain
when it exits if MPI has not been finalized.

The third case is the same as the second except that the library will finalize MPI when the last instance of a
MapReduce object is destructed. Note that this means your program cannot delete all its MapReduce objects in a
early phase of the program and then instantiate more MapReduce objects later. This limitation is why the second
case is provided. The third case is invoked by passing a double to the constructor. If this is done for any
instantiated MapReduce object, then the library will finalize MPI. The value of the double doesn't matter as it isn't
used. The use of a double is simply to make it different than the first case, since MPI_Comm is often
implemented by MPI libraries as a type cast to an integer.

As examples, any of these lines of code will create a MapReduce object, where "mr" is either a pointer to the
object or the object itself:

MapReduce *mr = new MapReduce(MPI_COMM_WORLD);
MapReduce *mr = new MapReduce();
MapReduce *mr = new MapReduce(0.0);
MapReduce mr(MPI_COMM_WORLD);
MapReduce mr();
MapReduce mr;
MapReduce mr(0.0); 

Related methods: destroy, copy()

22

http://www.cs.sandia.gov/~sjplimp/mapreduce.html


MapReduce−MPI WWW Site − MapReduce−MPI Documentation

Destroy a MapReduce object

MapReduce::~MapReduce() 

This destroys a previously created MapReduce object, freeing all the memory it allocated internally to store keys
and values.

If you created the MapReduce object in this manner:

MapReduce *mr = new MapReduce(MPI_COMM_WORLD); 

then you should destroy it with

delete mr 

If you created the MapReduce object in this manner:

MapReduce mr(MPI_COMM_WORLD); 

then it will be destroyed automatically when the "mr" variable goes out of scope.

Related methods: create

23

http://www.cs.sandia.gov/~sjplimp/mapreduce.html


MapReduce−MPI WWW Site − MapReduce−MPI Documentation

MapReduce gather() method

uint64_t MapReduce::gather(int nprocs) 

This calls the gather() method of a MapReduce object, which collects the key/value pairs of a KeyValue object
spread across all processors to form a new KeyValue object on a subset (nprocs) of processors. Nprocs can be 1 or
any number smaller than P, the total number of processors. The gathering is done to the lowest ID processors,
from 0 to nprocs−1. Processors with ID >= nprocs end up with an empty KeyValue object containing no
key/value pairs. The method returns the total number of key/value pairs in the new KeyValue object, which will
be the same as in the original KeyValue object.

This method can be used to collect the results of a reduce() to a single processor for output. See the collapse() and
scrunch() methods for related ways to collect key/value pairs for output. A gather() may also be useful before a
reduce() if the number of unique key/value pairs is small enough that you wish to perform the reduce tasks on
fewer processors.

This method requires parallel point−to−point communication as processors send their key/value pairs to other
processors.

Related methods: scrunch(), broadcast()

24

http://www.cs.sandia.gov/~sjplimp/mapreduce.html


MapReduce−MPI WWW Site − MapReduce−MPI Documentation

KeyValue add() method

void KeyValue::add(char *key, int keybytes, char *value, int valuebytes)
void KeyValue::add(int n, char *keys, int keybytes, char *values, int valuebytes)
void KeyValue::add(int n, char *keys, int *keybytes, char *values, int *valuebytes) 

The methods are called by the mymap(), mycompress(), and myreduce() functions in your program to register
key/value pairs with the KeyValue object stored by the MapReduce object whose map(), compress(), or reduce()
method was invoked. The first version registers a single key/value pair. The second version registers N key/value
pairs, where the keys are all the same length and the values are all the same length. The third version registers a
set of N key/value pairs where the length of each key and of each value is specified.

As explained here, from the perspective of the MR−MPI library, keys and values are variable−length byte strings.
To register such strings, you must specify their length in bytes. This is done via the keybytes and valuebytes
arguments, either as a single length or as a vectors of lengths. Note that if your key or value is a text string, it
should typically include a trailing "0" to terminate the string.

See the Settings and Technical Details sections for details on the byte−alignment of keys and values you register
with these add methods.

25

http://www.cs.sandia.gov/~sjplimp/mapreduce.html


MapReduce−MPI WWW Site − MapReduce−MPI Documentation

MapReduce map() method

Variant 1:
uint64_t MapReduce::map(int nmap, void (*mymap)(int, KeyValue *, void *), void *ptr)
uint64_t MapReduce::map(int nmap, void (*mymap)(int, KeyValue *, void *), void *ptr, int addflag) 

Variant 2:
uint64_t MapReduce::map(int nstr, char **strings, int self, int recurse, int readfile, void (*mymap)(int, char *, KeyValue *, void *), void *ptr)
uint64_t MapReduce::map(int nstr, char **strings, int self, int recurse, int readfile, void (*mymap)(int, char *, KeyValue *, void *), void *ptr, int addflag) 

Variant 3:
uint64_t MapReduce::map(int nmap, int nstr, char **strings, int recurse, int readfile, char sepchar, int delta, void (*mymap)(int, char *, int, KeyValue *, void *), void *ptr)
uint64_t MapReduce::map(int nmap, int nstr, char **strings, int recurse, int readfile, char sepchar, int delta, void (*mymap)(int, char *, int, KeyValue *, void *), void *ptr, int addflag) 

Variant 4:
uint64_t MapReduce::map(int nmap, int nstr, char **strings, int recurse, int readfile, char *sepstr, int delta, void (*mymap)(int, char *, int, KeyValue *, void *), void *ptr)
uint64_t MapReduce::map(int nmap, int nstr, char **strings, int recurse, int readfile, char *sepstr, int delta, void (*mymap)(int, char *, int, KeyValue *, void *), void *ptr, int addflag) 

Variant 5:
uint64_t MapReduce::map(MapReduce *mr2, void (*mymap)(uint64_t, char *, int, char *, int, KeyValue *, void *), void *ptr)
uint64_t MapReduce::map(MapReduce *mr2, void (*mymap)(uint64_t, char *, int, char *, int, KeyValue *, void *), void *ptr, int addflag) 

This calls the map() method of a MapReduce object. A function pointer to a mapping function you write is
specified as an argument. This method either creates a new KeyValue object to store all the key/value pairs
generated by your mymap function, or adds them to an existing KeyValue object. The method returns the total
number of key/value pairs in the KeyValue object.

There are several variants of the map() methods to allow for different ways to process input data. This also
induces variants of the callback mymap() function.

For the first set of variants (with or without addflag) you simply specify a total number of map tasks nmap to
perform across all processors. The index of a map task is passed back to your mymap() function. The MapReduce
library assigns map tasks to processors; see more details below.

For the second set of variants, you specify nstr and strings which are file and/or directory names. Using these
strings, a list of filenames is generated. Each filename in the list is passed back to your mymap() function which
can open the file and process it.

If self is 0, then only processor 0 generates the list of filenames, and the MapReduce library assigns files to
processors; see more details below. If self is 1, then each processor generates its own list of filenames and those
files are assigned to that processor. Note that in the self = 0 case, it is assumed that every processor can read any
file that is assigned to it. Also note, that with self = 1 you can assign files to a processor that reside on a disk local
to a processor, or with a parallel disk system you can pass different strings to different processors so that each
processor reads from different set of files/directories.

The list of filenames is generated in the following manner. Each of the strings is checked for whether it is a file or
directory. If it is a file, it is added to the list of files. If it is a directory, the directory is opened and all the files in it
are added to the list of files. If the recurse flag is set to 1, then if sub−directories are found in the directory, they
are opened and the files in them are also added to the list of files (and so forth, recursively).

The readfile setting adds one additional wrinkle. If readfile is 1, then instead of adding each filename to the list,
each file is opened, and filenames are read from that file and added to the list. In this mode, each file should
contain contain one filename per line. Blank lines are not allowed. Leading and trailing whitespace around each

26

http://www.cs.sandia.gov/~sjplimp/mapreduce.html


filename is OK.

The number of files that are generated and processed can be accessed after the map() method is invoked, but the
variable mapfilecount, e.g.

MapReduce *mr = new MapReduce();
mr−>map(nstr,strings,1,0,1,mymap,NULL);
int ntotalfiles = mr−>mapfilecount; 

The third set of variants allows large file(s) to be broken into chunks and one or more sections to be passed back
to your mymap() function as a string so it can process it. Nmap is the number of chunks to generate from all the
files in aggregate (not nmap chunks per file). As with the previous variant, you also specify nstr, strings, recurse,
and readfile. This generates a list of filenames, the same as in the previous variant. The only difference is that no
self setting is allowed, because only processor 0 does this. The specified nmap should be >= the number of files in
the generated list; it is reset to the number of files if that is not the case.

For the third set of variants you specify a separation character sepchar. For the fourth set of variants, you specify
a separation string sepstr. The files in the generated list of files are split into nmap chunks with roughly equal
numbers of bytes in each chunk. Think of all the files concatenated together and then split into nmap chunks. For
each call to your mymap() function, a chunk is read from a particular file, and passed to your function as a string,
so your code does not read the file. See details below about the splitting methodology and the delta input
parameter.

For the fifth set of variants, you specify an existing MapReduce object mr2 with key/value pairs, which can either
be this MapReduce object or another one. The key/value pairs from mr2 are passed back to your mymap()
function, one key/value at a time, allowing you to generate new key/value pairs from an existing set.

You can give any of the map() methods a pointer (void *ptr) which will be returned to your mymap() function.
See the Technical Details section for why this can be useful. Just specify a NULL if you don't need this.

The meaning of the final addflag argument is as follows.

For all but the last variant, if addflag is omitted or is specified as 0, then map() will create a new KeyValue object,
deleting any existing KeyValue object. If addflag is non−zero, then KV pairs generated by your mymap() function
are added to an existing KeyValue object, which is created if needed.

For the last variant, if the source of KeyValue pairs (mr2) is different than the MapReduce object mr, then the KV
pairs in mr2 are not altered or deleted, regardless of the addflag setting. If addflag is 0, then the KeyValue object
in mr is deleted, and newly generated KV pairs are added to a new KeyValue object. If addflag is 1, then newly
generated KV pairs are added to the existing KeyValue object in mr.

For the last variant, if the source of KeyValue pairs (mr2) is the same as MapReduce object mr, there are two
possibilities. If addflag is 1, then newly generated KV pairs are added to the existing KeyValue object. If addflag
is 0, then the existing KeyValue object is effectively replaced by the newly generated KV pairs. Note that the
addflag=1 option requires the KeyValue object to first be copied. If your mymap() function will not generate any
new KV pairs, then it is more efficient to use the scan() method, which simply allows you to iterated over the
existing KV pairs.

In these examples the user function is called mymap() and it has one of four interfaces depending on which
variant of the map() method is invoked:

void mymap(int itask, KeyValue *kv, void *ptr)
void mymap(int itask, char *file, KeyValue *kv, void *ptr)

27



void mymap(int itask, char *str, int size, KeyValue *kv, void *ptr)
void mymap(uint64_t itask, char *key, int keybytes, char *value, int valuebytes, KeyValue *kv, void *ptr) 

In all cases, the final 2 arguments passed to your function are a pointer to a KeyValue object (kv) stored internally
by the MapReduce object, and the original pointer you specified as an argument to the map() method, as void
*ptr.

In the first mymap() variant, itask is passed to your function with a value 0 <= itask < nmap, where nmap was
specified in the map() call. For example, you could use itask to select a file from a list stored by your application.
Your mymap() function could open and read the file or perform some other operation.

In the second mymap() variant, itask will have a value 0 <= itask < nfiles, where nfiles is either the number of
filenames in the list of files that was generated. Your function is also passed a single filename, which it will
presumably open and read.

In the third mymap() variant, itask will have a value from 0 <= itask < nmap, where nmap was specified in the
map() call and is the number of file segments generated. It is also passed a string of bytes (str) of length size read
from one of the files. Size includes a trailing '\0' that is appended to the string.

For map() methods that take files and a separation criterion as arguments, you must specify nmap >= nfiles, so
that there is one or more map tasks per file. For files that are split into multiple chunks, the split is done at
occurrences of the separation character or string. You specify a delta of how many extra bytes to read with each
chunk that will guarantee the splitting character or string is found within that many bytes. For example if the files
are lines of text, you could choose a newline character '\n' as the sepchar, and a delta of 80 (if the longest line in
your files is 80 characters). If the files are snapshots of simulation data where each snapshot is 1000 lines (no
more than 80 characters per line), you could choose the first line of each snapshot (e.g. "Snapshot") as the sepstr,
and a delta of 80000. Note that if the separation character or string is not found within delta bytes, an error will be
generated. Also note that there is no harm in choosing a large delta so long as it is not larger than the chunk size
for a particular file.

If the separation criterion is a character (sepchar), the chunk of bytes passed to your mymap() function will start
with the character after a sepchar, and will end with a sepchar (followed by a '\0'). If the separation criterion is a
string (sepstr), the chunk of bytes passed to your mymap() function will start with sepstr, and will end with the
character immediately preceeding a sepstr (followed by a '\0'). Note that this means your mymap() function will
be passed different byte strings if you specify sepchar = 'A' vs sepstr = "A".

In the fourth mymap() variant, itask will have a value from 0 <= itask < nkey, where nkey is a unsigned 64−bit int
and is the number of key/value pairs in the specified MapReduce object. Key and value are the byte strings for a
single key/value pair and are of length keybytes and valuebytes respectively.

The MapReduce library assigns map tasks to processors. Options for how it does this can be controlled by
MapReduce settings. Basically, nmap/P tasks are assigned to each processor, where P is the number of processors
in the MPI communicator you instantiated the MapReduce object with.

Typically, your mymap() function will produce key/value pairs which it registers with the MapReduce object by
calling the add() method of the KeyValue object. The syntax for registration is described on the doc page of the
KeyValue add() method.

See the Settings and Technical Details sections for details on the byte−alignment of keys and values you register
with the KeyValue add() methods or that are passed to your mymap() function.

Aside from the assignment of tasks to processors, this method is really an on−processor operation, requiring no
communication. When run in parallel, each processor generates key/value pairs and stores them, independently of

28



other processors.

Related methods: Keyvalue add(), reduce()

29



MapReduce−MPI WWW Site − MapReduce−MPI Documentation

MapReduce open() method

MapReduce close() method

void MapReduce::open()
void MapReduce::open(int addflag)
uint64_t MapReduce::close() 

These call the open() and close() methods of a MapReduce object. This is only necessary when you will be
performing a map() or reduce() that generates key/value pairs, and you wish to add pairs not only to the
MapReduce object which is invoking the map() and reduce(), but also to one or more other MapReduce objects.
In order to do this, you need to invoke the open() and close() methods on the other MapReduce object(s), so that
they can accumulate new key/value pairs properly. The close() method returns the total number of key/value pairs
in the KeyValue object.

Here is an example of how this is done:

MapReduce *mr = new MapReduce()
MapReduce *mr2 = new MapReduce()
mr2−>open()
mr−>map(1000,mymap,mr2−>kv);
mr2−>close() 

void mymap(int itask, KeyValue *kv, void *ptr) {
  ...
  kv−>add(key1,key1bytes,value1,value1bytes);
  KeyValue *kv2 = (KeyValue *) ptr;
  kv2−>add(key2,key2bytes,value2,value2bytes);
} 

The mymap() function is being called from the "mr" MapReduce object, and can add key/value pairs to "mr" in
the usual way, via the kv−>add() function call. But it can also add key/value pairs to the "mr2" MapReduce object
via the kv2−>add() function call. To do this, 3 things were necessary:

call the open() method of mr2 before the map() was invoked• 
pass a pointer to the map() which allows mymap() to retrieve the pointer to mr2's internal KeyValue
object

• 

call the close() method of mr2 after the map() was invoked• 

The second bullet point was accomplishsed by passing mr2−>kv directly to the map() method, but other variations
are possible. For example, a pointer to a data structure could be passed, which contains pointers to several other
MapReduce objects. In this case, the open() and close() methods for each of the other MapReduce objects would
need to be called appropriately before and after the map() method, assuming they would each have key/value
pairs added to them by the mymap() function.

You can call open() and close() as many times as needed, but note calls to open() and close() should always come
in pairs. You should not call close() when an open() has not been invoked. And you should not open() a second
time without calling close() first.

Related methods: map(), reduce

30

http://www.cs.sandia.gov/~sjplimp/mapreduce.html


MapReduce−MPI WWW Site − MapReduce−MPI Documentation

MapReduce print() method

void MapReduce::print(int proc, int nstride, int kflag, int vflag)
void MapReduce::print(char *file, int fflag, int proc, int nstride, int kflag, int vflag) 

This calls the print() method of a MapReduce object. The first variant prints out the KeyValue or KeyMultiValue
pairs to the screen. The second variant prints to one or more files. This can be useful for debugging purposes.

If proc < 0, then all processors print their information, one processor at a time. If proc >= 0, then only the
specified proc prints its information.

For printing to files, if fflag = 0, then all processors print in succession to the names file. If fflag = 1, then each
processor writes to file.P, where P = 0 to Nprocs−1.

Each processor prints every Nth of its pairs, where N = nstride. Thus if nstride = 1, all pairs are printed.

The kflag and vflag setting control the format of the printed output. Only a limited set of choices is available. If
these choices do not match the format of your keys and values, you will need to pass your data to map() or
reduce() function you write yourself to print them. These can be invoked by the map() or reduce() methods.

These are the recognized kflag and vflag settings:

flag = 0 for NULL• 
flag = 1 for 32−bit positive integer (int)• 
flag = 2 for 64−bit unsigned integer (uint64_t)• 
flag = 3 for 32−bit floating point value (float)• 
flag = 4 for 64−bit floating point value (double)• 
flag = 5 for a NULL−terminated string• 
flag = 6 for a pair of 32−bit positive integers (int int)• 
flag = 7 for a pair of 64−bit unsigned integers (uint64_t uint64_t)• 

For example, using kflag = 1 and vflag = 7, would be appropriate for keys that are 32−bit integers, and values that
are a pair of 64−bit integers.

For KeyMultiValue pairs, the vflag setting is used to format each output value in the multi−value.

Related methods: collate()

31

http://www.cs.sandia.gov/~sjplimp/mapreduce.html


MapReduce−MPI WWW Site − MapReduce−MPI Documentation

MapReduce reduce() method

MapReduce multivalue_blocks() method

MapReduce multivalue_block() method

MapReduce multivalue_block_select() method

uint64_t MapReduce::reduce(void (*myreduce)(char *, int, char *, int, int *, KeyValue *, void *), void *ptr) 

uint64_t MapReduce::multivalue_blocks() 

int MapReduce::multivalue_block(int iblock, char **ptr_multivalue, int **ptr_valuesizes) 

void MapReduce::multivalue_block_select(int which) 

This calls the reduce() method of a MapReduce object, passing it a function pointer to a myreduce function you
write. It operates on a KeyMultiValue object, calling your myreduce function once for each unique
key/multi−value (KMV) pair owned by that processor. A new KeyValue object is created which stores all the
key/value pairs generated by your myreduce() function. The method returns the total number of new key/value
pairs stored by all processors.

You can give this method a pointer (void *ptr) which will be returned to your myreduce() function. See the
Technical Details section for why this can be useful. Just specify a NULL if you don't need this.

In this example the user function is called myreduce() and it must have the following interface, which is the same
as that used by the compress() method:

void myreduce(char *key, int keybytes, char *multivalue, int nvalues, int *valuebytes, KeyValue *kv, void *ptr) 

A single KMV pair is passed to your function from the KeyMultiValue object stored by the MapReduce object.
The key is typically unique to this reduce task and the multi−value is a list of the nvalues associated with that key
in the KeyMultiValue object.

There are two possibilities for a KMV pair returned to your function. The first is that it fits in one page of memory
allocated by the MapReduce object, which is the usual case. See the memsize setting for details on memory
allocation.

In this case, the char *multivalue argument is a pointer to the beginning of the multi−value which contains all
nvalues, packed one after the other. The int *valuebytes argument is an array which stores the length of each
value in bytes. If needed, it can be used by your function to compute an offset into char *values for where each
individual value begins. Your function is also passed a kv pointer to a new KeyValue object created and stored
internally by the MapReduce object.

If the KMV pair does not fit in one page of memory, then the meaning of the arguments passed to your function is
changed. Your function must call two additional library functions in order to retrieve a block of values that does
fit in memory, and process them one block at a time.

In this case, the char *multivalue argument will be NULL and the nvalues argument will be 0. Either of these can
be tested for within your function. If you know that no KMV pair will overflow one page of memory, then the test

32

http://www.cs.sandia.gov/~sjplimp/mapreduce.html


is not needed. The meaning of the kv and ptr arguments is the same as discussed above. However, the int
*valuebytes argument is changed to be a pointer to the MapReduce object. This is to allow you to make the
following two kinds of calls back to the library:

MapReduce *mr = (MapReduce *) valuebytes;
int nblocks;
uint64_t nvalues_total = mr−>multivalue_blocks(nblocks);
for (int iblock = 0; iblock <nblocks; iblock++) { 
  int nv = mr−>multivalue_block(iblock,ebytes);
  for (int i = 0; i  <nv; i++) {
    process each value within the block of values
  }
} 

The call to multivalue_blocks() returns both the total number of values (as an unsigned 64−bit integer), and the
number of blocks of values in the multi−value. Each call to multivalue_block() retrieves one block of values. The
number of values in the block is returned, as nv in this case. The multivalue and valuebytes arguments are
pointers to a char * and int * (i.e. a char ** and int **), which will be set to point to the block of values and their
lengths respectively, so they can then be used just as the multivalue and valuebytes arguments in the myreduce()
callback itself (when the values do not exceed available memory).

Note that in this example we are re−using (and thus overwriting) the original multivalue and valuebytes
arguments as local variables.

Also note that your myreduce() function can call multivalue_block() as many times as it wishes and process the
blocks of values multiple times or in any order, though looping through blocks in ascending order will typically
give the best disk I/O performance.

If you need to load and process two blocks of values simultaneously (e.g. in a double loop), then the
multivalue_block_select() function can be called with which = 1 or 2 to specify a page of memory to read a block
of values into. This should be set just before the call to multivalue_block(), to insure one block of values is not
overwritten by reading a second block.

Your myreduce() function can produce key/value pairs (though this is not required) which it registers with the
MapReduce object by calling the add() method of the KeyValue object. The syntax for registration is described on
the doc page of the KeyValue add() method. Alternatively, your myreduce() function can write information to an
output file.

See the Settings and Technical Details sections for details on the byte−alignment of keys and values that are
passed to your myreduce() function and on those you register with the KeyValue add() methods. Note that only
the first value of a multi−value (or of each block of values) passed to your myreduce() function will be aligned to
the valuealign setting.

This method is an on−processor operation, requiring no communication. When run in parallel, each processor
performs a myreduce() on each of the key/value pairs it owns and stores any new key/value pairs it generates.

Related methods: Keyvalue add(), map()

33



MapReduce−MPI WWW Site − MapReduce−MPI Documentation

MapReduce scan() method

uint64_t MapReduce::scan(void (*myscan)(char *, int, char *, int, void *), void *ptr)
uint64_t MapReduce::scan(void (*myscan)(char *, int, char *, int, int *, void *), void *ptr) 

This calls the scan() method of a MapReduce object, passing it a function pointer to a myscan function you write.
Depending on whether you pass it a function for processing key/value (KV) or key/multi−value (KMV) pairs, it
will call your myscan function once for each KV or KMV pair owned by that processor. The KV or KMV pairs
stored by the MapReduce object are not altered by this operation, nor are you allowed to emit any new KV pairs.
Thus your myscan function is not passed a KV pointer. This is a useful way to simply scan over the existing KV
or KMV pairs and process them in some way, e.g. for debugging or statistics generation or output.

Contrast this method with the map() method variant that takes a MapReduce object as input and returns KV pairs
to your mymap() function. If that MapReduce object is the same as the caller and if the addflag parameter is set to
0, your existing KV pairs are deleted by this action. If the addflag parameter is set to 1, and you emit no new KV
pairs, then your existing KV pairs are unchanged. However a copy of all your KV pairs is first performed to
insure this outcome. The scan() method avoids this copy.

Also contrast this method with the reduce() method which returns KMV pairs to your myreduce() function. Your
existing KMV pairs are deleted by this action, and replaced with new KV pairs which you generate.

You can give this method a pointer (void *ptr) which will be returned to your myscan() function. See the
Technical Details section for why this can be useful. Just specify a NULL if you don't need this.

In this example the user function is called myscan() and it must have one of the two following interfaces,
depending on whether the MapReduce object currently contains KV or KMV pairs:

void myscan(char *key, int keybytes, char *value, int valuebytes, void *ptr)
void myscan(char *key, int keybytes, char *multivalue, int nvalues, int *valuebytes, void *ptr) 

Either a single KV or KMV pair is passed to your function from the KeyValue or KeyMultiValue object stored by
the MapReduce object. In the case of KMV pairs, the key is typically unique to this scan task and the multi−value
is a list of the nvalues associated with that key in the KeyMultiValue object.

There are two possibilities for a KMV pair returned to your function. The first is that it fits in one page of memory
allocated by the MapReduce object, which is the usual case. Or it does not, in which case the meaning of the
arguments passed to your function is changed. This behavior is identical to that of the reduce() method, including
the meaning of the arguments returned to your myscan() function, and the 3 additional library functions you can
call to retrieve additional values in the KMV pair, namely:

uint64_t MapReduce::multivalue_blocks()
int MapReduce::multivalue_block(int iblock, char **ptr_multivalue, int **ptr_valuesizes)
void MapReduce::multivalue_block_select(int which) 

See the reduce() method doc page for details.

See the Settings and Technical Details sections for details on the byte−alignment of keys and values that are
passed to your myscan() function. Note that only the first value of a multi−value (or of each block of values)
passed to your myscan() function will be aligned to the valuealign setting.

This method is an on−processor operation, requiring no communication. When run in parallel, each processor

34

http://www.cs.sandia.gov/~sjplimp/mapreduce.html


performs a myscan() on each of the KV or KMV pairs it owns.

Related methods: map(), reduce()

35



MapReduce−MPI WWW Site − MapReduce−MPI Documentation

MapReduce scrunch() method

uint64_t MapReduce::scrunch(int nprocs, char *key, int keybytes) 

This calls the scrunch() method of a MapReduce object, which gathers a KeyValue object onto nprocs and
collapses it into a KeyMultiValue object. This method is exactly the same as performing a gather() followed by a
collapse(). The method returns the total number of key/value pairs in the KeyMultiValue object which should be
one for each of the nprocs.

The nprocs argument is used by the gather() portion of the operation. See the gather() doc page for details. The
key and keybytes arguments are used by the collapse() portion of the operation. See the collapse() doc page for
details.

Note that if nprocs > 1, then the same key will be assigned to the collapsed key/multi−value pairs on each
processor.

This method can be used to collect a set of key/value pairs to use in a reduce() method so that it can all be passed
to a single invocation of your myreduce() function for output.

This method is a parallel operation (gather()), followed by an on−processor operation (collapse()).

Related methods: collapse(), gather()

36

http://www.cs.sandia.gov/~sjplimp/mapreduce.html


MapReduce−MPI WWW Site − MapReduce−MPI Documentation

Settings and defaults

These are internal library variables that can be set by your program:

mapstyle = 0 (chunk) or 1 (stride) or 2 (master/slave)• 
all2all = 0 (irregular communication) or 1 (use MPI_Alltoallv)• 
verbosity = 0 (none) or 1 (summary) or 2 (histogrammed)• 
timer = 0 (none) or 1 (summary) or 2 (histogrammed)• 
memsize = N = number of Mbytes per page of memory• 
minpage = N = # of pages to pre−allocate per processor• 
maxpage = N = max # of pages allocatable per processor• 
freepage = 1 if memory pages are freed in between operations, 0 if held• 
outofcore = 1 if even 1−page data sets are forced to disk, 0 if not, −1 if cannot write to disk• 
zeropage = 1 if zero out every allocated page, 0 if not• 
keyalign = N = byte−alignment of keys• 
valuealign = N = byte−alignment of values• 
fpath = string• 

All the settings except fpath are set in the following manner from C++:

MapReduce *mr = new MapReduce(MPI_COMM_WORLD);
mr−>verbosity = 1; 

Because fpath takes a string argument, it is set with the following function:

mr−>set_fpath(char *string); 

See the C interface and Python interface doc pages for how to set the various settings from C and Python.

As documented below, some of these settings can be changed at any time. Others only have effect if they are
changed before the MapReduce object begins to operate on KeyValue and KeyMultiValue objects.

The mapstyle setting determines how the N map tasks are assigned to the P processors by the map() method.

A value of 0 means split the tasks into "chunks" so that processor 0 is given tasks from 0 to N/P, proc 1 is given
tasks from N/P to 2N/P, etc. Proc P−1 is given tasks from N − N/P to N.

A value of 1 means "strided" assignment, so proc 0 is given tasks 0,P,2P,etc and proc 1 is given tasks
1,P+1,2P+1,etc and so forth.

A value of 2 uses a "master/slave" paradigm for assigning tasks. Proc 0 becomes the "master"; the remaining
processors are "slaves". Each is given an initial task by the master and reports back when it is finished. It is then
assigned the next available task which continues until all tasks are completed. This is a good choice if the CPU
time required by various mapping tasks varies greatly, since it will tend to load−balance the work across
processors. Note however that proc 0 performs no mapping tasks.

This setting can be changed at any time.

The default value for mapstyle is 0.

37

http://www.cs.sandia.gov/~sjplimp/mapreduce.html


The all2all setting determines how point−to−point communication is done when the aggregate() method is
invoked, either by itself or as part of a collate().

A value of 0 means custom routines for irregular communication are used. A value of 1 means the
MPI_Alltoallv() function from the MPI library is used. The results should be identical. Which is faster depends on
the MPI library implementation of the MPI standard on a particular machine.

This setting can be changed at any time.

The default value for all2all is 1.

The verbosity setting determines how much diagnostic output each library call prints to the screen. A value of 0
means "none". A value of 1 means a "summary" of the results across all processors is printed, typically a count of
total key/value pairs and the memory required to store them. A value of 2 prints the summary results and also a
"histogram" of these quantities by processor, so that you can detect memory usage imbalance.

This setting can be changed at any time.

The default value for verbosity is 0.

The timer setting prints out timing information for each call to the library. A value of 0 means "none". A value of
1 invokes an MPI_Barrier() at the beginning and end of the operation and prints the elapsed time, which will be
the same on all processors. A value of 2 invokes no MPI_Barrier() calls and prints a one−line summary of timing
results across all processors and also a "histogram" of the time on each processor, so that you can detect
computational imbalance.

This setting can be changed at any time.

The default value for timer is 0.

The memsize setting determines the page size (in Mbytes) of each page of memory allocated by the MapReduce
object to perform its operations. The number of pages required by different methods varies; 1 to 7 is typical. The
freepage setting (see below) determines whether pages are freed or not between operations, once allocated. See
this section for a summary of memory page requirements.

The minimum allowed value for the memsize setting is 1, meaning 1 Mb pages.

IMPORTANT NOTE: The maximum value is unlimited, but you should insure the total memory consumed by all
pages allocated by all the MapReduce objects you create, does not exceed the physical memory available (which
may be shared by several processors if running on a multi−core node). If you do this, then many systems will
allocate virtual memory, which will typically cause MR−MPI library operations to run very slowly and thrash the
disk.

If the data owned by a processor in its collection of KeyValue or KeyMultiValue pairs fits within one page, then
no disk I/O is performed; the MR−MPI library runs in−core. If data exceeds the page size, then it is written to
temporary disk files and read back in for subsequent operations; the MR−MPI library runs out−of−core. See this
section for more discussion of out−of−core operations. These files are created on a per−processor basis and are
deleted when no longer needed. Thus if you delete all MapReduce objects that you have instantiated, no such files
should exist at the end of the user program. If you should need to clean them up yourselves (e.g. your program
crashes), see the discussion of the fpath setting which describes how they are named and where they reside.

38



If you set memsize small, then processing a large data set will induce many reads and writes to disk. If you make
it large, then the reads and writes will happen in large chunks, which generally yields better I/O performance.
However, past a few MBytes in size, there may be little gain in I/O performance.

This setting can only be changed before the first KeyValue or KeyMultiValue object is created by the MapReduce
object. If changed after that, it will have no effect.

The default value for memsize is 64, meaning 64 Mbyte pages.

The default value can be changed by a compiler setting when the MR−MPI library is built. Using this flag for the
compilation of the src/mapreduce.cpp file:

−DMRMPI_MEMSIZE=n 

where n = 16, for example, will build the library with the default set to 16 Mbyte pages, instead of 64.

The minpage setting determines how many memory pages each processor pre−allocates as a block of contiguous
memory when the MapReduce object performs its first operation. Minpage can be set to a number >= 0.

Note that if the freepage setting is 1 then memory pages will be freed after each MapReduce operation. This will
include the initial minpage block of pages if none of them are in use.

This setting can only be changed before the first KeyValue or KeyMultiValue object is created by the MapReduce
object. If changed after that, it will have no effect.

The default value for minpage is 0.

The maxpage setting determines the maximum number of pages a processor can ever allocate when performing
MapReduce operations. Normally this will be no more than 7; see the discussion in this section for more details.
Maxpage can be set to a number >= 0. A value of 0 means there is no limit; new pages are allocated whenever
they are needed.

This setting can be changed at any time, though previously−allocated pages are not deleted if maxpage is set to a
smaller number.

The default value for maxpage is 0.

The freepage setting determines whether or not the MapReduce ojbect frees unused memory pages after each
operation is completed. If freepage is set to 0, then once allocated, pages are never deallocated until the
MapReduce object itself is deleted. In this case pages are reused by successive operations performed by the
library. If freepage is set to 1, then after each operation, pages used by the operation are freed, and then
reallocated (as needed) by the next operation.

The default freepage setting of 1 is useful to limit memory use, particularly if your code uses several MapReduce
objects or you are running in parallel on a multi−core node where all the cores share the same physical memory. If
memory is not an issue, setting freepage to 0 may be somewhat faster, since memory pages will not be repeatedly
allocated and freed. See the zeropage setting for an additional source of overhead when pages are repeatedly freed
and allocated.

If the outofcore setting is 1, then setting freepage to 1 means that all memory pages will be released after each
MapReduce operation. If outofcore is set to 0, and data fits in a single page, then the MapReduce object will
always hold onto a single page of memory for that data even if freepage is set to 1.

39



This setting can be changed at any time.

The default value for freepage is 1.

The outofcore setting determines whether data that could fit in a single page of memory, within a KeyValue or
KeyMultiValue object, will still be written to disk. If the data does not fit in a single page, it is always written to
disk. If outofcore is 1, then disk files will be written. If outofcore is 0, then disk files are not written if not needed.
If outofcore is −1, then disk files cannot be created and an error will result if they are needed. The latter setting is
a way to insure that your data set fits in memory.

Note that if the freepage setting and the outofcore setting are both 1, then all memory pages will be released after
each MapReduce operation. This can be useful to insure if your application uses many MapReduce objects and
wants to limit its memory use.

This setting can be changed at any time.

The default value for outofcore is 0.

The zeropage setting determines whether newly allocated pages are filled with 0 bytes when allocated by the
MapReduce object. Note that this does not apply to reused pages that were not freed. A setting of 1 means zero
each page. A setting of 0 leaves them uninitialized.

Normally it should not be necessary to zero out allocated memory, and it only consumes time, especially if large
pages are being used and are freed and allocated often (e.g. with freepage set to 1). But it can be useful when
debugging with memory checkers, which may flag certain bytes within pages as uninitialized, even when this
doesn't matter. This is because the byte−alignment rules for keys and values (discussed below) can skip over bytes
in the page when data is written to the page.

This setting can be changed at any time.

The default value for zeropage is 0.

The keyalign and valuealign settings determine the byte alignment of keys and values generated by the user
program when they are stored inside the library and passed back to the user program. A setting of N means
N−byte alignment. N must always be a power of two.

As explained in this section, keys and values are variable−length strings of bytes. The MR−MPI library knows
nothing of their contents and simply treats them as contiguous chunks of bytes. This section explains why it may
be important to insure proper alignment of numeric data such as integers and floating point values.

Because keys are stored following integer lengths, keys are always at least 4−byte aligned. A larger alignment
value can be specified if desired.

Because they follow keys, which may be of arbitrary length (e.g. a string), values can be 1−byte aligned. Note that
if all keys are integers, then values will also be 4−byte aligned. A larger alignment value can be specified if
desired.

When a multi−value is returned to the user program, e.g. by the callback of a reduce() method, only the first value
in the multi−value is aligned to the valuealign setting. Subsequent values are packed one after the other. If all
values are the same data−type, e.g. integers, then they will all have the same alignment. However, if the values are
mixed data types (e.g. strings and integers), then you may need to insure each value is aligned properly before
using it in your myreduce() function. See the Technical Details for more discussion of data alignment.

40



These settings can only be changed before the first KeyValue or KeyMultiValue object is created by the
MapReduce object. If changed after that, they will have no effect.

The default value for keyalign and valuealign is 4, meaning 4−byte alignment of keys and values.

The fpath setting determines the pathname for all disk files created by the MR−MPI library when it runs in
out−of−core mode. Note that it is not a pathname for user data files read by the map() method. Those should be
specified directly as part of the filename.

Out−of−core disk files are created with names like "fpath/mrmpi.kv,N,M,P" where "kv" is an file−type string
("kv", or "kmv" or "sort" or "part" or "set"), N is a number unique to each MapReduce object, M is a file counter,
and P is the processor ID. fpath/mrmpi.kmv.N.P. Sort files are created by the sorting methods. Part and set files
are created by collate() or convert() methods.

Setting fpath may be useful for specifying a disk local to each processor, or for a parallel file system that each
processor can access.

This setting can only be changed before the first KeyValue or KeyMultiValue object is created by the MapReduce
object. If changed after that, it will have no effect.

The default value for fpath is ".", which means the current working directory.

The default value can be changed by a compiler setting when the MR−MPI library is built. Using this flag for the
compilation of the src/mapreduce.cpp file:

−DMRMPI_FPATH=foo 

where foo is the desired pathname, will build the library with the default fpath set to foo, instead of the current
working directory.

41



MapReduce−MPI WWW Site − MapReduce−MPI Documentation

MapReduce sort_keys() method

uint64_t MapReduce::sort_keys(int (*mycompare)(char *, int, char *, int))
uint64_t MapReduce::sort_keys(int flag) 

This calls the sort_keys() method of a MapReduce object, which sorts a KeyValue object by its keys to produce a
new KeyValue object.

For the first variant, you provide a mycompare() function which compares pairs of keys for the sort, since the
MapReduce object does not know how to interpret the content of your keys. The method returns the total number
of key/value pairs in the new KeyValue object which will be the same as in the original.

For the second variant, you can select one of several pre−defined compare functions, so you do not have to write
the compare function yourself:

flag = +/− 1 compare 2 integers

flag = +/− 2 compare 2 64−bit unsigned integers

flag = +/− 3 compare 2 floats

flag = +/− 4 compare 2 doubles

flag = +/− 5 compare 2 NULL−terminated strings via strcmp()

flag = +/− 6 compare 2 arbitrary strings via strncmp()
If the flag is positive, the sorting is done is ascending order; if the flag is negative, the sorting is done is
descending order.

For the flag = +/− 6 case, the 2 strings do not have to be NULL−terminated since only the first N characters are
compared, where N is the shorter of the 2 string lengths.

This method is used to sort key/value pairs by key before a KeyValue object is transformed into a KeyMultiValue
object, e.g. via the clone(), collapse(), or convert() methods. Note that these operations preserve the order of
paires in the KeyValue object when creating a KeyMultiValue object, which can then be passed to your
application for output, e.g. via the reduce() method. Note however, that sort_keys() does NOT sort keys across all
processors but only sorts the keys on each processor within the KeyValue object. Thus if you gather() or
aggregate() after performing a sort_keys(), the sorted order will be lost, since those methods move key/value pairs
to new processors.

In this example for the first variant, the user function is called mycompare() and it must have the following
interface

int mycompare(char *key1, int len1, char *key2, int len2) 

Key1 and key2 are pointers to the byte strings for 2 keys, each of length len1 and len2. Your function should
compare them and return a −1, 0, or 1 if key1 is less than, equal to, or greater than key2, respectively.

This method is an on−processor operation, requiring no communication. When run in parallel, each processor
operates only on the key/value pairs it stores.

Related methods: sort_values(), sort_multivalues()

42

http://www.cs.sandia.gov/~sjplimp/mapreduce.html


MapReduce−MPI WWW Site − MapReduce−MPI Documentation

MapReduce sort_multivalues() method

uint64_t MapReduce::sort_multivalues(int (*mycompare)(char *, int, char *, int))
uint64_t MapReduce::sort_multivalues(int) 

This calls the sort_multivalues() method of a MapReduce object, which sorts the values for each key within a
KeyMultiValue object to produce a new KeyMultiValue object.

For the first variant, you provide a mycompare() function which compares pairs of values for the sort, since the
MapReduce object does not know how to interpret the content of your values. The method returns the total
number of key/multi−value pairs in the new KeyMultiValue object which will be the same as in the original.

For the second variant, you can select one of several pre−defined compare functions, so you do not have to write
the compare function yourself:

flag = 1 compare 2 integers

flag = 2 compare 2 64−bit unsigned integers

flag = 3 compare 2 floats

flag = 4 compare 2 doubles

flag = 5 compare 2 NULL−terminated strings via strcmp()

flag = 6 compare 2 arbitrary strings via strncmp()
For the flag = 6 case, the 2 strings do not have to be NULL−terminated since only the first N characters are
compared, where N is the shorter of the 2 string lengths.

This method can be used to sort a set of multi−values within a key before they are passed to your application, e.g.
via the reduce() method. Note that it typically only makes sense to use sort_multivalues() for a KeyMultiValue
object created by the convert() or collate() methods, not KeyMultiValue objects created by the clone() or
collapse() or scrunch() methods.

In this example for the first variant, the user function is called mycompare() and it must have the following
interface

int mycompare(char *value1, int len1, char *value2, int len2) 

Value1 and value2 are pointers to the byte strings for 2 values, each of length len1 and len2. Your function should
compare them and return a −1, 0, or 1 if value1 is less than, equal to, or greater than value2, respectively.

This method is an on−processor operation, requiring no communication. When run in parallel, each processor
operates only on the key/multi−value pairs it stores.

Related methods: sort_keys(), sort_values()

43

http://www.cs.sandia.gov/~sjplimp/mapreduce.html


MapReduce−MPI WWW Site − MapReduce−MPI Documentation

MapReduce sort_values() method

uint64_t MapReduce::sort_values(int (*mycompare)(char *, int, char *, int))
uint64_t MapReduce::sort_values(int flag) 

This calls the sort_values() method of a MapReduce object, which sorts a KeyValue object by its values to
produce a new KeyValue object.

For the first variant, you provide a mycompare() function which compares pairs of values for the sort, since the
MapReduce object does not know how to interpret the content of your values. The method returns the total
number of key/value pairs in the new KeyValue object which will be the same as in the original.

For the second variant, you can select one of several pre−defined compare functions, so you do not have to write
the compare function yourself:

flag = 1 compare 2 integers

flag = 2 compare 2 64−bit unsigned integers

flag = 3 compare 2 floats

flag = 4 compare 2 doubles

flag = 5 compare 2 NULL−terminated strings via strcmp()

flag = 6 compare 2 arbitrary strings via strncmp()
For the flag = 6 case, the 2 strings do not have to be NULL−terminated since only the first N characters are
compared, where N is the shorter of the 2 string lengths.

This method is used to sort key/value pairs by value before a KeyValue object is transformed into a
KeyMultiValue object, e.g. via the clone(), collapse(), or convert() methods. Note that these operations preserve
the order of pairs in the KeyValue object when creating a KeyMultiValue object, which can then be passed to
your application for output, e.g. via the reduce() method. Note however, that sort_values() does NOT sort values
across all processors but only sorts the values on each processor within the KeyValue object. Thus if you gather()
or aggregate() after performing a sort_values(), the sorted order will be lost, since those methods move key/value
pairs to new processors.

In this example for the first variant, the user function is called mycompare() and it must have the following
interface

int mycompare(char *value1, int len1, char *value2, int len2) 

Value1 and value2 are pointers to the byte strings for 2 values, each of length len1 and len2. Your function should
compare them and return a −1, 0, or 1 if value1 is less than, equal to, or greater than value2, respectively.

This method is an on−processor operation, requiring no communication. When run in parallel, each processor
operates only on the key/value pairs it stores.

Related methods: sort_keys(), sort_multivalues()

44

http://www.cs.sandia.gov/~sjplimp/mapreduce.html


MapReduce−MPI WWW Site − MapReduce−MPI Documentation

MapReduce kv_stats() method

MapReduce kmv_stats() method

MapReduce cummulative_stats() method

uint64_t MapReduce::kv_stats(int level)
uint64_t MapReduce::kmv_stats(int level)
void MapReduce::cummulative_stats(int level, int reset) 

Calling the kv_stats() method prints statistics about the KeyValue object stored within the MapReduce object.
The total number of key/value pairs is returned. If level = 0 is specified, nothing else is done. If level = 1 is
specified, a one−line summary is printed for all the key/value pairs across all processors. If a level = 2 is
specified, per−processor information is also printed in a one−line histogram format.

Calling the kmv_stats() method prints statistics about the KeyMultiValue object stored within the MapReduce
object. The total number of key/multi−value pairs is returned. If level = 0 is specified, nothing else is done. If
level = 1 is specified, a one−line summary is printed for all the key/multi−value pairs across all processors. If a
level = 2 is specified, per−processor information is also printed in a one−line histogram format.

Calling the cummulative_stats() method prints statistics about the cummulative memory allocation,
inter−processor communication volume, and file I/O volume that has been performed by all MapReduce
operations up to this point, by all MapReduce objects your program has instantiated. If level = 1 is specified, a
brief summary is printed. If level = 2 is specified, per−processor information is also printed in a one−line
histogram format.

If the reset flag is set to 1, then the counters for these quantities are reset to 0.

This cummulative_stats() method is called internally when your program destructs the last MapReduce object,
using the verbosity setting for the level argument. If verbosity is set to 0, then the method is not called.

45

http://www.cs.sandia.gov/~sjplimp/mapreduce.html


MapReduce−MPI WWW Site − MapReduce−MPI Documentation

C interface to the MapReduce−MPI Library

The MR−MPI library can be called from a C program, using the interface defined in src/cmapreduce.h. This is a C
file which should be included in your C program to define the API to the library:

#include "cmapreduce.h" 

Note that the C interface should also be usable to call the MapReduce MPI library from Fortran or other hi−level
languages, including scripting languages. See information below on how to do this from Python.

The C interface consists of the following functions. Their functionality and arguments are described in the C++
interface section.

void *MR_create(MPI_Comm comm);
void *MR_create_mpi();
void *MR_create_mpi_finalize();
void *MR_copy(void *MRptr);
void MR_destroy(void *MRptr); 

uint64_t MR_add(void *MRptr);
uint64_t MR_aggregate(void *MRptr, int (*myhash)(char *, int));
uint64_t MR_broadcast(void *MRptr, int root);
uint64_t MR_clone(void *MRptr);
uint64_t MR_close(void *MRptr);
uint64_t MR_collapse(void *MRptr, char *key, int keybytes);
uint64_t MR_collate(void *MRptr, int (*myhash)(char *, int));
uint64_t MR_compress(void *MRptr, 
                     void (*mycompress)(char *, int, char *, int, int *, void *KVptr, void *APPptr),
                     void *APPptr);
uint64_t MR_convert(void *MRptr);
uint64_t MR_gather(void *MRptr, int numprocs); 

uint64_t MR_map(void *MRptr, int nmap,
                void (*mymap)(int, void *KVptr, void *APPptr),
                void *APPptr);
uint64_t MR_map_add(void *MRptr, int nmap,
                    void (*mymap)(int, void *KVptr, void *APPptr),
                    void *APPptr, int addflag);
uint64_t MR_map_file(void *MRptr, int nstr, char **strings,
                     int self, int recurse, int readfile,
                     void (*mymap)(int, char *, 
                                   void *KVptr, void *APPptr),
                     void *APPptr);
uint64_t MR_map_file_add(void *MRptr, int nstr, char *strings,
                         int self, int recurse, int readfile,
                         void (*mymap)(int, char *, 
                                       void *KVptr, void *APPptr),
                         void *APPptr, int addflag);
uint64_t MR_map_file_char(void *MRptr, int nmap, int nstr, char **strings,
                          int recurse, int readfile,
                          char sepchar, int delta,
                          void (*mymap)(int, char *, int, void *KVptr, void *APPptr),
                          void *APPptr);
uint64_t MR_map_file_char_add(void *MRptr, int nmap, int nstr, char **strings,
                              int recurse, int readfile,
                              char sepchar, int delta,
                              void (*mymap)(int, char *, int, void *KVptr, void *APPptr),
                              void *APPptr, int addflag);

46

http://www.cs.sandia.gov/~sjplimp/mapreduce.html


uint64_t MR_map_file_str(void *MRptr, int nmap, int files, char **files,
                         char *sepstr, int delta,
                         void (*mymap)(int, char *, int, void *KVptr, void *APPptr),
                         void *APPptr);
uint64_t MR_map_file_str_add(void *MRptr, int nmap, int files, char **files,
                             char *sepstr, int delta,
                             void (*mymap)(int, char *, int, void *KVptr, void *APPptr),
                             void *APPptr, int addflag);
uint64_t MR_map_mr(void *MRptr, void *MRptr2,
                   void (*mymap)(uint64_t, char *, int, char *, int *, void *KVptr, void *APPptr),
                   void *APPptr);
uint64_t MR_map_mr_add(void *MRptr, void *MRptr2,
                  void (*mymap)(uint64_t, char *, int, char *, int *, void *KVptr, void *APPptr),
                  void *APPptr, int addflag); 

void MR_open(void *MRptr, int addflag);
void MR_open_add(void *MRptr);
void MR_print(void *MRptr, int, int, int, int);
void MR_print_file(void *MRptr, char *, int, int, int, int, int); 

uint64_t MR_reduce(void *MRptr,
                   void (*myreduce)(char *, int, char *, int, int *, void *KVptr, void *APPptr),
                   void *APPptr);
uint64_t MR_multivalue_blocks(void *MRptr);
void MR_multivalue_block_select(void *MRptr, int which);
int MR_multivalue_block(void *MRptr, int iblock,
                        char **ptr_multivalue, int **ptr_valuesizes); 

uint64_t MR_scan_kv(void *MRptr,
                    void (*myscan)(uint64_t, char *, int, char *, int, void *),
                    void *APPptr);
uint64_t MR_scan_kmv(void *MRptr,
                     void (*myscan)(char *, int, char *, int, int *, void *),
                     void *APPptr); 

uint64_t MR_scrunch(void *MRptr, int numprocs, char *key, int keybytes); 

uint64_t MR_sort_keys(void *MRptr, 
                      int (*mycompare)(char *, int, char *, int));
uint64_t MR_sort_keys_flag(void *MRptr, int);
uint64_t MR_sort_values(void *MRptr,
                        int (*mycompare)(char *, int, char *, int));
uint64_t MR_sort_values_flag(void *MRptr, int);
uint64_t MR_sort_multivalues(void *MRptr,
                             int (*mycompare)(char *, int, char *, int)); 

uint64_t MR_sort_multivalues_flag(void *MRptr, int);

void MR_kv_stats(void *MRptr, int level);
void MR_kmv_stats(void *MRptr, int level); 

void MR_set_mapstyle(void *MRptr, int value);
void MR_set_verbosity(void *MRptr, int value);
void MR_set_timer(void *MRptr, int value);
void MR_set_memsize(void *MRptr, int value);
void MR_set_keyalign(void *MRptr, int value);
void MR_set_valuealign(void *MRptr, int value); 

void MR_kv_add(void *KVptr, char *key, int keybytes, 
               char *value, int valuebytes);
void MR_kv_add_multi_static(void *KVptr, int n,
                            char *key, int keybytes,

47



                            char *value, int valuebytes);
void MR_kv_add_multi_dynamic(void *KVptr, int n,
                            char *key, int *keybytes,
                            char *value, int *valuebytes); 

These functions correspond one−to−one with the C++ methods described here, except that for C++ methods with
multiple interfaces (e.g. map()), there are multiple C functions, with slightly different names. The MR_set()
functions are added to the C interface to enable the corresponding library variables to be set.

Note that when you call MR_create() or MR_copy(), they return a "void *MRptr" which is a pointer to the
MapReduce object created by the library. This pointer is used as the first argument of all the other MR calls. This
means a C program can effectively instantiate multiple MapReduce objects by simply keeping track of the
pointers returned to it.

The remaining arguments of each function call are the same as those used with the C++ methods. The only
exceptions are several of the MR_kv_add() functions which take a KVptr as their first argument. This is a pointer
to a KeyValue object. These calls are made from your program's mymap(), myreduce(), and mycompress()
functions to register key/value pairs with the MR−MPI library. The KVptr is passed as an argument to your
functions when they are called back from the MR−MPI library.

See the C programs in the examples directory for examples of how these calls are made from a C program. They
are conceptually identical to the C++ programs in the same directory.

48



MapReduce−MPI WWW Site − MapReduce−MPI Documentation

Python interface to the MapReduce−MPI Library

A Python wrapper for the MR−MPI library is included in the distribution. The advantage of using Python is how
concise the language is, enabling rapid development and debugging of MapReduce programs. The disadvantage is
speed, since Python is slower than a compiled language. Using the MR−MPI library from Python incurs two
additional overheads, discussed in the Technical Details section.

Before using the MR−MPI library in a Python script, the Python on your machine must be "extended" to include
an interface to the MR−MPI library. If your Python script will invoke MPI operations, you will also need to
extend your Python with an interface to MPI itself.

Thus you should first decide how you intend to use the MR−MPI library from Python. There are 3 options:

(1) Use the library on a single processor running Python.

(2) Use the library in parallel, where each processor runs Python, but your application script does not use MPI.

(3) Use the library in parallel, where each processor runs Python, and your application also makes MPI calls
through a Python/MPI interface.

Note that for (2) and (3) you will not be able to interact with Python interactively by typing commands and
getting a response. This is because when you have multiple instances of Python running (e.g. on a parallel
machine) they cannot all read what you type.

Working in mode (1) does not require your machine to have MPI installed. You should extend your Python with a
serial version of the MR−MPI library and its dummy MPI library. See instructions below on how to do this.

Working in mode (2) requires your machine to have an MPI library installed, but your Python does not need to be
extended with MPI itself. The MPI library must be a shared library (e.g. a *.so file on Linux) which is not
typically created when MPI is built/installed. See instruction below on how to do this. You should extend your
Python with the parallel MR−MPI library which will use the shared MPI system library. See instructions below
on how to do this.

Working in mode (3) requires your machine to have MPI installed (as a shared library as in (2)). You must also
extend your Python with the parallel MR−MPI library (same as in (2)) and with MPI itself, via one of several
available Python/MPI packages. See instructions below on how to do the latter task.

The following sub−sections cover the rest of the Python setup discussion:

Extending Python with a serial version of the MR−MPI library• 
Creating a shared MPI library• 
Extending Python with a parallel version of the MR−MPI library• 
Extending Python with MPI itself• 
Testing the MR−MPI library from Python• 

This sub−section describes the Python syntax used to invoke the MR−MPI library:

Using the MR−MPI library from Python• 

49

http://www.cs.sandia.gov/~sjplimp/mapreduce.html


Extending Python with a serial version of the MR−MPI library

From the python directory, type

python setup_serial.py build 

and then one of these commands:

sudo python setup_serial.py install
python setup_serial.py install −−home=~/foo 

The "build" command should compile all the needed MR−MPI C++ files, including the dummy MPI library. The
first "install" command will put the needed files in your Python's site−packages sub−directory, so that Python can
load them. For example, if you installed Python yourself on a Linux machine, it would typically be somewhere
like /usr/local/lib/python2.5/site−packages. Installing Python packages this way often requires you to be able to
write to the Python directories, which may require root priveleges, hence the "sudo" prefix. If this is not the case,
you can drop the "sudo".

Alternatively, you can install the MR−MPI files (or any other Python packages) in your own user space. The
second "install" command does this, where you should replace "foo" with your directory of choice.

If these commands are successful, an mrmpi.py and _mrmpi_serial.so file will be put in the appropriate directory.

Creating a shared MPI library

A shared library is one that is dynamically loadable, which is what Python requires. On Linux this is a library file
that ends in ".so", not ".a". Such a shared library is normally not built if you installed MPI yourself, but it is easy
to do. Here is how to do it for MPICH, a popular open−source version of MPI, distributed by Argonne National
Labs. From within the mpich directory, type

./configure −−enable−sharedlib=gcc
make
make install 

You may need to use "sudo make install" in place of the last line. The end result should be the file libmpich.so in
/usr/local/lib. Note that if the file libmpich.a already existed in /usr/local/lib, you will now have both a static and
shared MPICH library. This will be fine for Python MR−MPI since it only uses the shared library. But if you
build other codes with libmpich.a, then those builds may fail if the linker uses libmpich.so instead, unless other
dynamic libraries are also linked to.

Extending Python with a parallel version of the MR−MPI library

From the python directory, type

python setup.py build 

and then one of these commands:

sudo python setup.py install
python setup.py install −−home=~/foo 

The "build" command should compile all the needed MR−MPI C++ files, which will require MPI to be installed
on your system. This means it must find both the header file mpi.h and a shared library file, e.g. libmpich.so if the
MPICH version of MPI is installed. See the preceding section for how to create a build MPI as a shared library if

50

http://www-unix.mcs.anl.gov/mpi


it does not exist.

The first "install" command will put the needed files in your Python's site−packages sub−directory, so that Python
can load them. For example, if you installed Python yourself on a Linux machine, it would typically be
somewhere like /usr/local/lib/python2.5/site−packages. Installing Python packages this way often requires you to
be able to write to the Python directories, which may require root priveleges, hence the "sudo" prefix. If this is not
the case, you can drop the "sudo".

Alternatively, you can install the MR−MPI files (or any other Python packages) in your own user space. The
second "install" command does this, where you should replace "foo" with your directory of choice.

If these commands are successful, an mrmpi.py and _mrmpi.so file will be put in the appropriate directory.

Extending Python with MPI itself

There are several Python packages available that purport to wrap MPI and allow its functions to be called from
Python.

These include

pyMPI• 
maroonmpi• 
mpi4py• 
myMPI• 
Pypar• 

All of these except pyMPI work by wrapping the MPI library (which must be available on your system as a
shared library, as discussed above), and exposing (some portion of) its interface to your Python script. This means
they cannot be used interactively in parallel, since they do not address the issue of interactive input to multiple
instances of Python running on different processors. The one exception is pyMPI, which alters the Python
interpreter to address this issue, and (I believe) creates a new alternate executable (in place of python itself) as a
result.

In principle any of these Python/MPI packages should work with the MR−MPI library. However, when I
downloaded and looked at a few of them, their docuemtation was incomplete and I had trouble with their
installation. It's not clear if some of the packages are still being actively developed and supported.

The one I recommend, since I have successfully used it with the MR−MPI library, is Pypar. Pypar requires the
ubiqtuitous Numpy package be installed in your Python. After launching python, type

>>> import numpy 

to see if it is installed. If not, here is how to install it (version 1.3.0b1 as of April 2009). Unpack the numpy tarball
and from its top−level directory, type

python setup.py build
sudo python setup.py install 

The "sudo" is only needed if required to copy Numpy files into your Python distribution's site−packages directory.

To install PyPar (version pypar−2.1.0_66 as of April 2009), unpack it and from its "source" directory, type

python setup.py build

51

http://pympi.sourceforge.net/
http://code.google.com/p/maroonmpi/
http://code.google.com/p/mpi4py/
http://nbcr.sdsc.edu/forum/viewtopic.php?t=89&sid=c997fefc3933bd66204875b436940f16
http://datamining.anu.edu.au/~ole/pypar
http://numpy.scipy.org


sudo python setup.py install 

Again, the "sudo" is only needed if required to copy PyPar files into your Python distribution's site−packages
directory.

If you have successully installed Pypar, you should be able to run python serially and type

>>> import pypar 

without error. You should also be able to run python in parallel on a simple test script

% mpirun −np 4 python test.script 

where test.script contains the lines

import pypar
print "Proc %d out of %d procs" % (pypar.rank(),pypar.size()) 

and see one line of output for each processor you ran on.

Testing the MR−MPI library from Python

Before importing the MR−MPI library in a Python program, one more step is needed. The interface to the library
is via Python ctypes, which loads the shared MR−MPI library via a CDLL() call, which in turn is a wrapper on the
C−library dlopen(). This command is different than a normal Python "import" and needs to be able to find the
MR−MPI shared library, which is either in the Python site−packages directory or in a local directory you
specified in the "python setup.py install" command, as described above.

The simplest way to do this is add a line like this to your .cshrc or other shell start−up file.

setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH:/usr/local/lib/python2.5/site−packages 

and then execute the file to insure the path has been updated. This will extend the path that dlopen() uses to look
for shared libraries.

To test if the MR−MPI library has been successfully installed, launch python in serial and type

>>> from mrmpi import mrmpi
>>> mr = mrmpi() 

If you get no errors, you're ready to use the library, as described below.

If you built the MR−MPI library for parallel use, launch python in parallel

% mpirun −np 4 python test.script 

where test.script contains the lines

import pypar
from mrmpi import mrmpi
mr = mrmpi()
print "Proc %d out of %d procs has" % (pypar.rank(),pypar.size()), mr
pypar.finalize() 

Again, if you get no errors, you're good to go.

52



Using the MR−MPI library from Python

The Python interface to the MR−MPI library consists of an "mrmpi" class which creates a "mrmpi" object, with a
set of methods that can be invoked on that object. The sample code lines below assume you have first imported
the "mrmpi" module as follows:

from mrmpi import mrmpi 

Note that when your script imports the Pypar package (same with some other Python/MPI packages), it initializes
MPI for you. Pypar does not, however, make the global MPI communicator (MPI_COMM_WORLD) visible to
your program, so you can't pass it to the MR−MPI library. When using Pypar, the last line of your input script
should thus be pypar.finalize(), to insure MPI is shut down correctly.

Some of the methods defined by the mrmpi class take callback functions as arguments, e.g. map() and reduce().
These are Python functions you define elsewhere in your script. When you register "keys" and "values" with the
library, they can be simple quantities like strings or ints or floats. Or they can be Python data structures like lists
or tuples.

These are the class methods defined by the mrmpi module. Their functionality and arguments are described in the
C++ interface section.

mr = mrmpi()                # create an mrmpi object
mr = mrmpi(mpi_comm)        # ditto, but with a specified MPI communicator
mr = mrmpi(0.0)             # ditto, and the library will finalize MPI 

mr2 = mr.copy()             # copy mr to create mr2 

mr.destroy()                # destroy an mrmpi object, freeing its memory
                            # this will also occur if Python garbage collects 

mr.add(mr2)
mr.aggregate()
mr.aggregate(myhash)        # if specified, myhash is a hash function
                            #   called back from the library as myhash(key)
                            # myhash() should return an integer (a proc ID)
mr.broadcast(root)
mr.clone()
mr.close()
mr.collapse(key)
mr.collate()
mr.collate(myhash)          # if specified, myhash is the same function
                            #   as for aggregate() 

mr.compress(mycompress)     # mycompress is a function called back from the
                            #   library as mycompress(key,mvalue,mr,ptr)
                            #   where mvalue is a list of values associated
                            #   with the key, mr is the MapReduce object,
                            #   and you (optionally) provide ptr (see below)
                            # your mycompress function should typically
                            #   make calls like mr−>add(key,value)
mr.compress(mycompress,ptr) # if specified, ptr is any Python datum
                            #    and is passed back to your mycompress()
                            # if not specified, ptr = None 

mr.convert()
mr.gather(nprocs) 

53



mr.map(nmap,mymap)          # mymap is a function called back from the
                            #   library as mymap(itask,mr,ptr)
                            #   where mr is the MapReduce object,
                            #   and you (optionally) provide ptr (see below)
                            # your mymap function should typically
                            #   make calls like mr−>add(key,value)
mr.map(nmap,mymap,ptr)      # if specified, ptr is any Python datum
                            #    and is passed back to your mymap()
                            # if not specified, ptr = None
mr.map(nmap,mymap,ptr,addflag) # if addflag is specfied as a non−zero int,
                               #   new key/value pairs will be added to the
                               #   existing key/value pairs 

mr.map_file(files,self,recurse,readfile,mymap)
                             # files is a list of filenames and dirnames
                             # mymap is a function called back from the
                             #   library as mymap(itask,filename,mr,ptr)
                             # as above, ptr and addflag are optional args
mr.map_file_char(nmap,files,recurse,readfile,sepchar,delta,mymap)
                             # files is a list of filenames and dirnames
                             # mymap is a function called back from the
                             #   library as mymap(itask,str,mr,ptr)
                             # as above, ptr and addflag are optional args
mr.map_file_str(nmap,files,recurse,readfile,sepstr,delta,mymap)
                             # files is a list of filenames and dirnames
                             # mymap is a function called back from the
                             #   library as mymap(itask,str,mr,ptr)
                             # as above, ptr and addflag are optional args
mr.map_mr(mr2,mymap)         # pass key/values in mr2 to mymap
                             # mymap is a function called back from the
                             #   library as mymap(itask,key,value,mr,ptr)
                             # as above, ptr and addflag are optional args 

mr.open()
mr.open(addflag)
mr.print_screen(proc,nstride,kflag,vflag)
mr.print_file(file,fflag,proc,nstride,kflag,vflag) 

mr.reduce(myreduce)         # myreduce is a function called back from the
                            #   library as myreduce(key,mvalue,mr,ptr)
                            #   where mvalue is a list of values associated
                            #   with the key, mr is the MapReduce object,
                            #   and you (optionally) provide ptr (see below)
                            # your myreduce function should typically
                            #   make calls like mr−>add(key,value)
mr.reduce(myreduce,ptr)     # if specified, ptr is any Python datum
                            #    and is passed back to your myreduce()
                            # if not specified, ptr = None 

mr.scan_kv(myscan)          # myscan is a function called back from the
                            #   library as myscan(key,value,ptr)
                            #   for each key/value pair
                            #   and you (optionally) provide ptr (see below)
mr.scan_kv(myscan,ptr)      # if specified, ptr is any Python datum
                            #    and is passed back to your myreduce()
                            # if not specified, ptr = None 

mr.scan_kmv(myscan)         # myscan is a function called back from the
                            #   library as myreduce(key,mvalue,ptr)
                            #   where mvalue is a list of values associated
                            #   with the key,
                            #   and you (optionally) provide ptr (see below)
mr.scan_kmv(myscan,ptr)     # if specified, ptr is any Python datum

54



                            #    and is passed back to your myreduce()
                            # if not specified, ptr = None 

mr.scrunch(nprocs,key)
mr.sort_keys(mycompare)
mr.sort_values(mycompare)
mr.sort_multivalues(mycompare) # compare is a function called back from the
                               #   library as mycompare(a,b) where
                               #   a and b are two keys or two values
                               # your mycompare() should compare them
                               #   and return a −1, 0, or 1 
                               #   if a <b, or a == b, or a > b
mr.sort_keys_flag(flag)
mr.sort_values_flag(flag)
mr.sort_multivalues_flag(flag) 

mr.kv_stats(level)
mr.kmv_stats(level) 

mr.mapstyle(value)             # set mapstyle to value
mr.all2all(value)              # set all2all to value
mr.verbosity(value)            # set verbosity to value
mr.timer(value)                # set timer to value
mr.memsize(value)              # set memsize to value
mr.minpage(value)              # set minpage to value
mr.maxpage(value)              # set maxpage to value 

mr.add(key,value)                 # add single key and value
mr.add_multi_static(keys,values)  # add list of keys and values
                                  # all keys are assumed to be same length
                                  # all values are assumed to be same length
mr.add_multi_dynamic(keys,values) # add list of keys and values
                                  # each key may be different length
                                  # each value may be different length 

These class methods correspond one−to−one with the C++ methods described here, except that for C++ methods
with multiple interfaces (e.g. map()), there are multiple Python methods with slightly different names, similar to
the C interface.

There is no set function the the keyalign and valuealign settings. These are hard−wired to 1 for the Python
interface, since no other values make sense, due to the pickling/unpickling that is performed in key and value
data.

See the Python scripts in the examples directory for examples of how these calls are made from a Python
program. They are conceptually identical to the C++ and C programs in the same directory.

55



MapReduce−MPI WWW Site − MapReduce−MPI Documentation

OINK interface to the MapReduce−MPI Library

OINK is a C++ application that provdes a hi−level scripting interface to the MR−MPI library which it uses
internally. These are three goals of OINK:

(1) To allow MapReduce algorithms which call the MR−MPI library to be written with a minimum of
extraneous code, to work with input/output in various forms, and to be chained together and driven via a
simple, yet versatile scripting language.

• 

(2) To create an archive of map() and reduce() functions for re−use by different algorithms.• 
(3) To provide a scripted interface to the lo−level MR−MPI library calls that can speed
development/debugging of new algortihms before coding them up in C++ or another language.

• 

OINK has its own manual and doc pages, so further details are not given here.

56

http://www.cs.sandia.gov/~sjplimp/mapreduce.html


MapReduce−MPI WWW Site − MapReduce−MPI Documentation

Technical Details

This section provides additional details about using the MapReduce library and how it is implemented. These
topics are covered:

Length and byte−alignment of keys and values• 
Memory requirements for KeyValue and KeyMultiValue objects• 
Out−of−core operation• 
Fundamemtal library limits• 
Hash functions• 
Callback functions• 
Python overhead• 
Error messages• 

Length and byte−alignment of keys and values

As explained in this section, keys and values are variable−length strings of bytes. The MR−MPI library knows
nothing of their contents and simply treats them as contiguous chunks of bytes.

When you register a key and value in your mymap() or mycompress() or myreduce() function via the KeyValue
add() method, you specify their lengths in bytes. Keys and values are typically returned to your program for
further processing or output, e.g. as arguments passed to your myreduce() function by the reduce() operation, as
are their lengths.

Keys and values are passed as character pointers to your functions where you may need to convert the pointer to
an appropriate data type and then correctly interpret the byte string. For example, either of these lines could be
used:

int *iptr = (int *) key;
int myvalue = *(int *) key; 

If the key or value is a variable−length text string, you may want to terminate it with a "0", and include the
trailing "0" in the byte count, so that C−library−style string functions can later be invoked on it. If a key or value
is a complex data structure, your function must be able to decode it.

IMPORTANT NOTE: An eaay way to encapsulate several datums as a key (or value) is to create a C struct that
includes each of them. Then the sizeof() function gives the byte count of the struct and the compiler takes care of
data alignment issues, as described below. If you do this for creating a key, then be aware that your individual
datums may not use up all the bytes returned by the sizeof() function. Again this is due to alignment constraints
imposed by the compiler. Normally this isn't something your code would worry about since you only acces the
datums, but if the struct is used as a key, and some bytes in the key are never intialized (by you filling in the
datums), then when that key is hashed by the MR−MPI library. e.g. to perform a collate() operation, those
uninitialized bytes will also be hashed. Since the uninitialed bytes may contain random garbage, this means 2 keys
with identical datums, might not hash identically, and thus their values would not be combined as you expect into
a single KeyMultiValue. The only solution for this is for you to initialize the struct before setting its datums, e.g.

typedef struct 
  double x;
  int i;

57

http://www.cs.sandia.gov/~sjplimp/mapreduce.html


 Tuple;
Tuple tuple;
memset(uple));
tuple.x = 1.0;
tuple.i = 1; 

The memset() function initializes the entire tuple to 0. Note that in this case sizeof(Tuple) is likely 16 bytes, but
the x and i datums will only set 12 of the 16 bytes, leaving the last 4 uninitialized. Also note that this whole
discussion is irrelevant if the struct is used only as a value, since only keys are hashed.

A related issue with keys and values is the byte−alignment of integer or floating point values they include. For
example, it is usually a bad idea to store an 8−byte double such that it is mis−aligned with respect to an 8−byte
boundary in memory. The reason is that using a mis−aligned double in a computation may be slow.

If your keys or values are homogeneous (e.g. all integers), you can use the keyalign and valuealign settings,
discussed here, to insure alignment of keys and values to desired byte boundaries. Since this may incur extra
memory costs, you should not typically make these settings larger than needed.

Special care may need to be taken if your values are heterogeneous, e.g. a mixture of strings and integers. This is
because the MR−MPI library packs values one after the other into one long byte string when it is returned to your
program as a multi−value, e.g. as an argument to the callback of a reduce() method. Only the first value in the
multi−value is aligned to the valuealign setting. Similarly, the collapse() method creates a multi−value that is
sequence of key,value,key,value,etc from a KV. If the keys are variable−length text strings and the values are
integers, then the values will not be aligned on 4−byte boundaries.

Here are two ideas that can be used to insure alignment of heterogeneous data:

(a) Say your "value" is a 4−byte integer followed by an 8−byte double. You might think it can be stored and
registered as 12 contiguous bytes. However, this would likely mean the double is mis−aligned. One solution is to
convert the integer to a double before storing both quantities in a 16−byte value string. Another solution is to
create a struct to store the integer and double and use the sizeof() function to determine the length of the struct and
use that as the length of your "value". The compiler should then guarantee proper alignment of each structure
member. If you use such a struct as a key, be aware of the "IMPORTANT NOTE" explained above.

(b) Your callback function can always copy the bytes of a key or value into a local data structure with the proper
alignment, e.g. using the C memcpy() function. E.g. in the collapse example above, these lines of code:

int myvalue;
memcpy(lue[offset],sizeof(int)); 

would load the 4 bytes of a particular value (at location offset) in the multi−value into the local integer "myvalue",
where it can then be used for computation.

Memory requirements for KeyValue and KeyMultiValue objects

KeyValue and KeyMultiValue objects are described in this section. A MapReduce object contains either a single
KeyValue object (KV) or a single KeyMultiValue object (KMV), depending on which methods you have
invoked.

The memory cost for storing key/value pairs in a KV is as follows. The key and value each have a byte length.
Two integers are also stored for the key and value length. There may also be additional bytes added to align the
key and value on byte boundaries in memory; see the keyalign and valuealign settings, discussed in this section.

58



Thus the total size of a KV is the memory for the key/value datums plus 2 integers per pair plus any extra
alignment bytes.

A KMV contains key/multi−value pairs where the number of pairs is typically the number of unique keys in the
original KV. The memory cost for storing key/multi−value pairs in a KMV is as follows. The key and
multi−value each have a byte length. For the multi−value, this is the sum of individual value lengths. Again, there
may also be additional bytes added to align the key and multi−value on byte boundaries in memory; see the
keyalign and valuealign settings, discussed in this section. Three integers are also stored: the key and multi−value
length, and the number of values N in the multi−value. An N−length array of integers is also stored for the length
of each value in the multi−value. Thus the total size of a KMV is the memory for the key/multi−value datums plus
3 integers per pair plus 1 integer per value in the original KV plus any extra alignment bytes.

Note that memory for key data in a KMV is typically less than in the original KV, since the KMV only stores
unique keys. The memory for multi−value data is the same as the value data in the original KV, since all the
original KV values are contained in the multi−values.

Note that in parallel, for a KV or KMV, each processor stores the above data for only a fraction of key/value pairs
it generated during a map() operation or acquired during other operations, like a collate(). If this is imbalanced,
one processor may own and process datums more than other processors.

If KV or KMV data on a processor exceeds the page size determined by the memsize setting, discussed here, then
data is written to temporary disk files, on a per−processor basis.

Out−of−core operation

If the KV or KMV pairs of a data set owned by a processor fit within a single page of memory, whose size is
determined by the memsize setting, then the MR−MPI library operates on the data in−core; no disk files are
written or read.

When the data on any single processor exceeds the page size, that processor will write data, one page at a time, to
one or more temporary disk files, and later read it back in as needed, again one page at a time. Thus all the
MR−MPI methods can be invoked on data sets larger than fit in the aggregate memory of the processors being
used. The only real limitation in this case is available disk space.

All of the MR−MPI methods, except one, perform their operations within a fixed number of memory pages. This
includes memory needed for message passing calls to the MPI library, e.g. buffers used to send and receive data.
Any large data exchanges are performed with pre−posted receives (MPI_Irecv) into user−space memory, which
do not require additional internal MPI library memory.

The number of required pages ranges from 1 to 7, and is listed on this page for each MR−MPI library method.
This means, for example, that even if the page size is 1 Mb (smallest allowed value), and the data set size is 10 Gb
per processor, and the sort_keys() method is invoked, which requires 5 pages per processor, that the operation will
successfully complete, using only 5 Mb per processor. Of course, there may be considerable disk I/O performed
along the way.

The one exception is the convert() method, also called by the collate() and commpress() methods, which performs
an on−processor reorganization of the data in a KV to produce a KMV. For large data sets this requires breaking
up the large KV data file into smaller files, each of which holds data that will contribute to one page of the
eventual KMV file. Each smaller file requires an in−memory buffer to store data that is written to the file. The
number of these smaller files, and hence the number of buffers, is hard to predict in advance or even bound. It
depends on the page size and the characteristics of the KV pairs, e.g. how many unique keys there are. The

59



number of extra allocated pages needed to store these buffers depends of the number of small files and the
minimum buffer size, which is currently set at 16K bytes for reasonable disk I/O performance. If a very large
number of small files are needed to partition the KV data and the page size is small, then several extra memory
pages may need to be allocated. This is not normally the case, but the number of small files and number of
allocated pages can be monitored if the verbosity setting is non−zero. Note that a larger page size will reduce the
number of extra pages the convert() method needs to allocate.

IMPORTANT NOTE: You should choose a memsize setting that insures the total memory consumed by all pages
allocated by all the MapReduce objects you create, does not exceed the physical memory available (which may be
shared by several processors if running on a multi−core node). If you do this, then many systems will allocate
virtual memory, which will typically cause MR−MPI library operations to run very slowly and thrash the disk.

Also note that in addition to "pages", there are numerous additional small allocations of memory made by the
MR−MPI library. Here are two examples. The aggregate() method allocates vectors of length P = the number of
processors. Out−of−core disk files are stored as "pages" of data. Each page requires some in−memory
bookkeeping so it can be written and read. Thus if a file grows to 1000s of pages, the corresponding in−memory
bookkeeping structure will also become larger. For normal page sizes as determined by the memsize setting, e.g.
the 64 Mbyte default, these additional in−memory allocations should be small compared to the size of a single
page.

Fundamemtal library limits

Even in out−of−core mode, the MR−MPI library has limitations on the data set sizes it can process. In practice,
these are hopefully not restrictive limits.

Define:

INTMAX = 2^31 − 1 = largest 32−bit signed int• 
UINT64MAX = 2^64 − 1 = largest 64−bit unsigned int• 
pagesize = size (in bytes) of 1 page of memory• 

Internal storage limits within library:

KV = KeyValue, KMV = KeyMultiValue

UINT64MAX = max byte count of KV or KMV data across all procs• 
UINT64MAX = max # of KV or KMV pairs across all procs• 
UINT64MAX = max # of values in a single KMV pair• 
UINT64MAX = max pagesize• 
min(pagesize,INTMAX) = max size of 1 KV pair• 
INTMAX = max number of KV or KMV pairs in one page (on a processor)• 
INTMAX = max # of values in single KMV pair, before split across pages• 
INTMAX = max summed value size in single KMV pair, before split across pages• 

Additional notes:

The user sets the "pagesize" via the memsize setting, in Mbytes. The pagesize can exceed INTMAX, though it
should not exceed the physical memory available. See the discussion above for more details.

Since the data set size is written to disk, when the library operates in out−of−core mode, the data size cannot
exceed available disk space, either on a per−processor basis (if each processor is writing to its own local disk), or

60



in aggregate (e.g. for a parallel file system). Some MR−MPI operations convert data from one form to another
(e.g. KV to KMV) or make intermediate copies of data (e.g. for sorting). At a minimum this typically requires 2x
the disk space of the data set itself.

As discussed here, a KeyValue pair requires 2 integers plus the key and value, plus alignment space. For a 1−byte
key and a 0−byte value, this is a minimum of 12 bytes. By storing no more than INTMAX KeyValue pairs on a
page, this still allows for pagesizes of nearly 24 Gb, more if KeyValue pair sizes are larger.

The various INTMAX limits mean that user calls to the library, and library callbacks to user functions can use int
parameters rather than uint64 parameters. It also reduces storage requirements for individual KeyValue and
KeyMultiValue pairs. One exception is that all the library methods return a uint64 for the final number of
KeyValue or KeyMultiValue pairs stored by the library. Another exception is the uint64 "itask" variable passed
back to one flavor of the user mymap() function via the map() method.

The INTMAX limits on the number of KeyMultiValue values stored in one page, mean that individual
KeyMultiValue pairs that exceed this will be split across multiple pages. The user callback functions access these
pages via the multivalue_blocks() and multivalue_block() methods, described witht the reduce() method.

Hash functions

The convert() and collate() methods use a hash function to organize keys and find duplicates. The MR−MPI
library uses the hashlittle() function from lookup3.c, written by Bob Jenkins and available freely on the WWW. It
operates on arbitrary−length byte strings (a key) and produces a 32−bit integer hash value, a portion of which is
used as a bucket index into a hash table.

Callback functions

Several of the library methods take a callback function as an argument, meaning that function is called back to
from the library when the method is invoked. These functions are part of your MapReduce program and can
perform any operation you wish on your data (or on no data), so long as they produce the appropriate information.
E.g. they generate key/value pairs in the case of map() or compress() or reduce(), or they hash a key to a processor
in the case of aggregate() or collate(), or they compare two keys or values in the case of sort_keys() or
sort_values().

The mymap() and myreduce() functions can perform simple operations or very complex, compute−intensive
operations. For example, if your parallel machine supports it, they could invoke another program or script to
read/parse an input file or calculate some result.

Note that in your program, a callback function CANNOT be a class method unless it is declared to be "static". It
can also be a non−class method, i.e. just a stand−alone function. In either case, such a function cannot access class
data.

One way to get around this restriction is to define global variables that allow your function to access information
it needs.

Another way around this restriction is to use the feature provided by several of the library methods with callback
function arguments which allow you to pass in a pointer to whatever data you wish. This pointer is returned as an
argument when the callback is made. This pointer should be cast to (void *) when passed in, and your callback
function can later cast it back to the appropriate data type. For example, a class could set the pointer to an array or
an internal data structure or the class itself as "(void *) this". Specify a NULL if your function doesn't need the

61



pointer.

Python overhead

Using the MR−MPI library from Python incurs two not−so−obvious overheads beyond the usual slowdown due to
using an interpreted language. First, Python objects used as keys and values are "pickled" and "unpickled" using
the cPickle Python library when passed into and out of the C++ library. This is because the library stores them as
byte strings. The pickling process serializes a Python object (e.g. an integer, a string, a tuple, or a list) into a byte
stream in a way that it can be unpickled into the same Python object.

The second overhead is due to the complexity of making a double callbacks between the library and your Python
script. I.e. the library calls back once to the user program which then calls back into the library. Consider what
happens during a map() operation when the library is called from a C++ program.

the program calls the library map() method• 
the library map() calls back to the user map() callback function• 
the user map() calls the library add() method to register a key/value pair• 

When doing this from Python there are 3 additional layers between the Python program and the library, the
Python mrmpi class, an invisible C layer (created by ctypes), and the C interface on the C++ library itself. Thus
the callback operation proceeds as follows:

the program calls the mrmpi class map() method• 
the mrmpi class map() calls the invisible C map() function• 
the invisible map() calls the C interface map() function• 
the C interface map() calls the library map() method• 
the library map() calls back to the invisible C callback function• 
the invisible callback calls the mrmpi class callback method• 
the mrmpi callback calls the user map() callback function• 
the user map() calls the mrmpi class add() method to register a key/value pair• 
the mrmpi class add() calls the invisible C add() function• 
the invisible add() calls the C interface add() function• 
the C interface add() calls the library add() method• 

Thus 3 calls have become 11 due to the 3 additional layers data must pass through. Some of these pass throughs
are very simple, but others require massaging and copying of data, like the pickling/unpickling described above,
which occurs in the mrmpi class methods. I was somewhat surprised this double−callback sequence works as well
and as transparently as it does − Python ctypes is amazing!

Error messages

The error messages printed out by the MR−MPI library are hopefully self−explanatory. At some point they will
be listed in these doc pages.

62



MapReduce−MPI WWW Site − MapReduce−MPI Documentation

Examples

This section describes the MapReduce programs provided in the examples directory of the distribution:

wordfreq• 
rmat• 

Each are provided in 3 formats: as a C++ program, C program, and Python script. Note that the Python scripts use
the PyPar package which provides a Python/MPI interface, as discussed above in the Python Interface section, so
you must have PyPar installed in your Python to run them.

The C++ and C programs can be built (assuming you have already built the MR−MPI library) by typing

make −f Makefile.foo 

from within the examples directory, using one of the provided Makefiles. As with the library itself, you may need
to edit one of the Makefiles to create a new version appropriate to your machine.

The examples directory also includes input scripts for the scripting interface to MR−MPI called OINK. There are
scripts for word frequency (in.wordfreq), R−MAT generation (in.rmat) and various graph algorithms (in.cc, in.tri,
in.luby, in.sssp, in.pagerank), described in the paper by Plimpton and Devine.

OINK has its own manual and doc pages. To run these scripts you will need to build OINK, and then run one of
the scripts as follows:

oink_machine <in.rmat 

Word frequency example

The wordfreq programs implement the word frequency counting algorithm described above in this section. The
wordfreq programs are run by giving a list of text files as arguments, e.g.

wordfreq ~/mydir/*.cpp
mpirun −np 8 wordfreq ~/mydir/*.cpp
cwordfreq ~/mydir/*.cpp
mpirun −np 8 cwordfreq ~/mydir/*.cpp
python wordfreq.py ~/mydir/*.cpp
mpirun −np 8 python wordfreq.py ~/mydir/*.cpp 

Total word counts and a list of the top 10 words should be printed to the screen, along with the time to perform
the operation.

The 3 different versions of the wordfreq program should give the same answers, although if non−text files are
used, the parsing of the contents into words can be done differently by the C library strtok() function and the
Python string "split" method.

63

http://www.cs.sandia.gov/~sjplimp/mapreduce.html
http://datamining.anu.edu.au/~ole/pypar


R−MAT matrices example

The rmat programs generate a particular form of randomized sparse matrix known as an R−MAT matrix.
Depending on the parameters chosen, the sparsity pattern in the resulting matrix can be highly non−uniform, and a
good model for irregular graphs, such as ones representing a network of computers or WWW page links.

The rmat programs are run by specifying a few parameters, e.g.

rmat N Nz a b c d frac outfile
mpirun −np 8 rmat N Nz a b c d frac outfile
crmat N Nz a b c d frac outfile
mpirun −np 8 crmat N Nz a b c d frac outfile
python rmat.py N Nz a b c d frac outfile
mpirun −np 8 python rmat.py N Nz a b c d frac outfile 

The meaning of the parameters is as follows. Note that only matrices with a power−of−2 number of rows can be
generated, so specifying N=20 creates a matrix with over a million rows.

2^N = # of rows in matrix• 
Nz = average # of non−zeroes per row• 
a,b,c,d = generation params for matrix entries, must sum to 1• 
frac = randomization parameter between 0 and 1• 
seed = random # seed, positive integer• 
outfile = optional output file• 

A full description of the R−MAT generation algorithm is beyond the scope of this doc page, but here's the brief
version. The a,b,c,d parameters are effectively weights on the 4 quadrants of the matrix. To generate a single new
matrix element, one quadrant is chosen, with a probability proportional to its weight. This operation is repeated
recursively within the chosen quadrant, applying the frac parameter to randomize the weights a bit. After N
iterations, a single I,J matrix location has been identified and its value is set (to 1 in this case).

The total number of matrix entries generated is Nx * 2^N. This procedure can generate duplicates, so those are
removed, and new elements generated until the desired number is reached.

When completed, the matrix statistics are printed to the screen, along with the time to generate the matrix. If the
optional outfile parameter is specified, then the matrix entries are written to files (one per processor). Each line of
any file has the form

I J value 

where I,J are the matrix row,column and value is the matrix entry (all are 1 in this case). If the files are
concatenated together, the full set of matrix entries should result.

The 3 different versions of the rmat programs should give the same answers in a statistical sense. The answers
will not be identical because the same random number generation scheme is not used in all 3 programs.

(RMAT) D. Chakrabarti, Y. Zhan, C. Faloutsos, R−MAT: A Recursive Model for Graph Mining", if Proceedings
of the SIAM Conference on Data Mining (2004), available at
http://www.cs.cmu.edu/~deepay/mywww/papers/siam04.pdf.

(Plimpton) Plimpton and Devine, "MapReduce in MPI for Large−Scale Graph Algorithms", to appear in Parallel

64



Computing (2011).

65.....................................................................................................................................................................................1


	Table of Contents
	
	MapReduce-MPI (MR-MPI) Library Documentation

	Background
	What is a MapReduce?
	Getting Started
	Writing a MapReduce program
	C++ Interface to the MapReduce-MPI Library
	MapReduce add() method
	MapReduce aggregate() method
	MapReduce broadcast() method
	MapReduce clone() method
	MapReduce collapse() method
	MapReduce collate() method
	MapReduce compress() method
	MapReduce multivalue_blocks() method
	MapReduce multivalue_block() method
	MapReduce convert() method
	Copy a MapReduce object
	Create a MapReduce object
	Destroy a MapReduce object
	MapReduce gather() method
	KeyValue add() method
	MapReduce map() method
	MapReduce open() method
	MapReduce close() method
	MapReduce print() method
	MapReduce reduce() method
	MapReduce multivalue_blocks() method
	MapReduce multivalue_block() method
	MapReduce multivalue_block_select() method
	MapReduce scan() method
	MapReduce scrunch() method
	Settings and defaults
	MapReduce sort_keys() method
	MapReduce sort_multivalues() method
	MapReduce sort_values() method
	MapReduce kv_stats() method
	MapReduce kmv_stats() method
	MapReduce cummulative_stats() method
	C interface to the MapReduce-MPI Library
	Python interface to the MapReduce-MPI Library
	OINK interface to the MapReduce-MPI Library
	Technical Details
	Length and byte-alignment of keys and values
	Memory requirements for KeyValue and KeyMultiValue objects
	Out-of-core operation
	Fundamemtal library limits
	Hash functions
	Callback functions
	Python overhead
	Error messages

	Examples
	Word frequency example
	R-MAT matrices example


